首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
在寒区修筑高速铁路,冻深是防冻胀设计的主要技术指标,目前我国《铁路特殊路基设计规范》中没有计算冻结深度的公式.本文分析了国内外冻结深度的计算方法,提出选择改进 Berggren 法作为铁路路基防冻胀设计的冻深公式,并对计算求解步骤和设计参数进行了探讨,对现场实测和有限元计算结果进行了比较,说明采用推荐方法较接近真实值.  相似文献   

2.
研究目的:冻胀问题是深季节冻土区高速铁路路基面变形控制难点之一。高速铁路对路基变形要求极高,特别是无砟轨道,冻胀变形更增加了其控制难度。鉴于加深高速铁路路基冻胀研究的必要性和紧迫性,本文系统总结近年来季节冻土区铁路路基冻胀的研究进展。研究结论:(1)季节冻土区铁路路基的防冻胀设计方法:德国、法国、日本等国都是通过冻结指数确定冻结深度,在冻结深度范围内填筑非冻胀填料,我国的不同之处在于采用标准冻深计算设计冻深;(2)季节性冻土冻胀形成机理包括水分迁移和成冰作用,冻胀发生三要素是:负温、细粒土和水,控制冻胀的措施主要为三类:保温、改良填料和改良水分,并分别总结介绍其研究成果及进展;(3)展望了未来的研究方向:加强现场监测和仿真分析;(4)本研究结论可为进一步研究高速铁路路基冻胀提供参考。  相似文献   

3.
基于哈大高铁典型断面的实测数据,运用非稳态相变温度场的数学模型及数值模拟的方法,采用有限元软件COMSOL Multiphysics对路基温度场进行了数值模拟,着重研究了不同型式防冻胀护道对季节性冻土区路基冻结特征的影响,分析了其对路基横向地温及横向冻深差异的消除效果。得出结论:增大防冻胀护道的高度可有效减少冷量从两侧侵入路基,能有效减小路基冻深;根据现有研究,建议在修建南北走向季节性冻土区高速铁路路基时采用阳坡侧较低,阴坡侧较高,且阴坡侧护道高度与路基齐平的非对称型式护道,以最大限度减小路基横向地温及横向冻深差异。  相似文献   

4.
路基冻胀问题是影响季节性冻土区高速铁路平顺性的核心问题之一,严重影响高铁运营质量和安全。混凝土基床是一种新型的高速铁路路基防冻胀结构,能够有效减少路基冻胀问题,但也存在其本身在季节性冻土区气候环境下的变形问题。使用顺序耦合热应力分析对混凝土基床开展仿真计算,分析其在不同长度、不同温度环境下的变形规律。研究结果表明:混凝土基床存在冬季两端翘曲现象,在极端条件下变形差可达4.8 mm,结构长度和环境气温均对变形有影响。  相似文献   

5.
大同—西安高速铁路综合试验段部分路基冻胀变形特征明显,变形大,段落长。部分路段冻胀量最大达18 mm,冻结深度最大达88 cm。以大西高速铁路综合试验段为研究背景,针对纬度较低的季节性冻土地区路基冻胀问题,分析了冻胀成因,探究了冻胀的发展趋势,并提出了轨道封闭-基床表层排水-基床底层排水的综合整治方案。深入探讨了关键工艺,提出了高路堑段基床底层盲沟渗水和明洞过渡段隔离开槽顺接侧沟排水的整治措施,解决了低纬度季节性冻土地区高速铁路路基结构的冻胀问题。  相似文献   

6.
高寒地区高速铁路路基冻深试验研究   总被引:4,自引:0,他引:4  
根据自动监测的哈大高速铁路沿线不同区段大气温度和路基冻深数据,研究哈大高速铁路沿线路基冻深的发展变化特征。结果表明:路基的冻深发展过程可分为快速发展和双向融化2个阶段,最大路基冻深可达300cm;在路基冻深快速发展阶段,路基冻深的发展速率随着里程的增大而增大,全线路基冻深的发展速度在1.11~2.89cm·d-1之间;在双向融化阶段,深层融化线的上升速度约为1.36cm·d-1,而表层融化线的上升速度约为3.86cm·d-1;由于大气温度波动较大,很难直观反映其对路基冻深的影响,因此采用冻结指数分析大气温度对路基冻深的影响,冻结指数与路基冻深的关系可用对数函数拟合;与土壤最大冻深相比,路基最大冻深普遍偏大,这是由于在哈大高速铁路的路基冻深范围内所用非冻胀填料与天然土壤相比细颗粒少、含水率低、导热系数高所致,因此,在进行冻深计算时应充分考虑填料的热物特性。  相似文献   

7.
寒区高速铁路路基的冻胀融沉直接影响列车的高速、安全和平稳运行。基于非饱和土渗流和热传导理论,将冻土水分场和温度场耦合,建立冻土的水热耦合微分方程;基于土体冻胀为各向同性的体积膨胀并且与材料的热膨胀现象相似,建立路基的冻胀模型;由水热耦合微分方程计算含冰量,再通过水动力冻胀模型计算路基的冻胀变形。数值计算与实测的路基冻胀变形规律基本吻合,均在路基达到最大冻结深度且冻结层开始双向融化时产生冻胀峰值,验证了数值模型的有效性;运用建立的数值模型分别计算保温板路基、保温板+沥青混凝土路基和保温板+沥青混凝土路面+碎石路基在最强冻胀效应时刻的冻胀变形,保温板+沥青混凝土路面+碎石路基的冻胀变形最小(最大值为1.3mm),保温板路基的冻胀变形最大(最大值为3.2mm)。建议在寒区高速铁路采用保温板+沥青混凝土路面+碎石路基的结构以尽量减小路基的冻胀变形。  相似文献   

8.
哈大高速铁路通车后,路基冻胀变形控制是其一项重要任务,为查明路基冻胀机理,探索适用的冻胀处理措施,对路基冻胀进行自动观测和深化分析研究。采用自动观测系统,对路肩以下5 m范围内路基的地温、水分、冻胀变形等进行观测,对观测结果进行统计分析和深化研究,研究结果表明:路基冻胀可分为5个阶段,冻深介于100~300 cm,基本上随着纬度的增大而增大;基床表层冻胀量占总冻胀量的40%~94%;融沉变形稳定后,存在4mm以内的残余变形;路堤与路堑的冻胀发展过程极为接近,但路堤的冻深一般大于路堑,路堤的冻胀量一般略大于路堑。  相似文献   

9.
以大(同)西(安)高速铁路高速综合试验段为例,对季节性冻土区路基冻害主要成因、整治措施及其效果进行研究。针对高速综合试验段路基含水量高、细颗粒含量大、所处区域长期低温而导致路基出现冻胀进行分析,采用封闭轨面渗水裂缝、清理电缆槽泄水孔、增设基床表层排水孔和基床底层排水盲沟等措施进行整治。分析对比病害整治区段同一位置的年度最大冻高数据,证明提出的路基冻害整治措施可行并有效。  相似文献   

10.
从路基冻胀机理出发,把冻胀过程的路基主体划分为3个区段:冻土区,冻结缘区和未冻土区,充分考虑冻结缘区的桥连作用,把3区段连在一起构成了桥连式冻胀模型.根据各区段的本质特征和主导作用,建立了相应的控制方程,并用连接条件构成一个完整的求解体系,采用半解析数值法对路基冻胀可进行定量计算.通过实例计算证明.结果与实例值吻合较好...  相似文献   

11.
客运专线路基工程的防冻胀处理措施   总被引:1,自引:0,他引:1  
赵润涛  李季宏  李曙光 《铁道勘察》2011,37(4):70-71,83
季节性冻土区路基冻胀和融沉使路基产生不均匀变形,是影响铁路运行速度和安全的重大隐患之一,解决路基冻胀问题是季节性冻土区路基设计的关键。结合哈大客运专线沈大段路基工程设计情况,对季节性冻土区客运专线路基工程防冻胀处理措施进行了说明。  相似文献   

12.
针对季节性冻土区高速铁路路基冻胀引起的线路平顺性问题,京沈(北京—沈阳)客运专线采用了混凝土基床结构设计,在基床范围内使用混凝土代替A,B组填料。通过监测路基混凝土基床的地温、冻结深度及分层变形发展情况,分析变形对高速铁路行车线路平顺性的影响。结果表明:混凝土基床路基最大变形在2. 5 mm以内,变形较小,符合高速铁路对线路平顺性的要求。  相似文献   

13.
换填法抑制季节冻土区铁路路基冻胀效果分析   总被引:4,自引:0,他引:4  
以沈哈线路基A、B组填料为研究对象,采用室内冻胀试验,研究粉黏粒含量对其冻胀特性的影响.试验表明:路基填料的冻胀系数随粉黏粒含量增加而增加,且增幅逐渐增大;结合沈哈线路基基床厚度及沿线最大冻深,为保证路基不产生冻胀破坏,应确保换填用路基A、B组填料中不含有粉黏粒.采用非稳态相变温度场的数学模型和热弹塑性冻胀模型,进行沈哈线换填试验段冻土路基冻融过程温度场及冻胀应力、变形场计算分析.结果表明:天然地面下2m左右为冻融活动层,是诱发路基土体冻胀的主要因素;用非冻胀性A、B组填料换填基床厚度范围内的冻胀性土层后,路堤填筑土体无冻胀变形产生,路基中的拉应力(拉应变)区域外移到距离路堤坡脚4m以外的天然地表下土体,大大减弱了对路堤的破坏作用,计算结果与实际情况相符.  相似文献   

14.
合理的防冻胀基床结构是季节性冻土地区高速铁路防冻胀的关键。本文通过开展哈大高速铁路正线与线外现场足尺试验,对局部保温措施与全断面保温措施的有效性进行了研究。试验结果表明:路肩和线间局部保温措施只能减小保温部位的冻结深度和冻胀,不能抑制轨道结构处的冻胀,不适用于季节性冻土地区高速铁路防冻胀设计;全断面保温措施能够降低轨道结构处的冻结深度和冻胀,有较好的防冻胀效果,季节性冻土地区高速铁路路基可采用全断面保温基床结构进行防冻胀设计。  相似文献   

15.
研究目的:在季节性冻土区修建高速铁路,路基冻胀变形控制是关键性难题,影响轨道的平顺性与列车运营的安全性。粗颗粒填料是国内外路基工程包括高速铁路防冻层广泛采用的填料,研究高速铁路路基粗颗粒填料冻胀特性对高速铁路路基的防冻胀,保证轨道的平顺性具有重要的意义。研究结论:通过室内和现场试验,开展了不同配比粗颗粒土的冻胀特性研究。试验结果表明:(1)粗颗粒填料在满足路基压实条件的前提下,可有效控制路基冻胀变形;(2)通过改进的室内冻胀试验,能够使试验中土样的均匀性和压实效果更接近现场工程的实际情况,从而使得试验结果更加可靠;(3)通过合理控制粗颗粒填料组分、级配、细颗粒含量等设计参数,可以达到较好的防冻胀效果;(4)本研究成果可应用于严寒地区高速铁路路基的防冻层,能够有效抑制路基冻胀,保证轨道的平顺性。  相似文献   

16.
研究目的:季冻区高速铁路路基冻胀变形较为普遍,局部冻胀变形会给无砟轨道受力带来较大影响,甚至有可能带来结构层开裂。为此,本文建立高速铁路无砟轨道-路基冻胀耦合计算模型,以路基冻胀变形曲线作为冻胀变形的输入条件,分析路基冻胀变形波长和幅值对不同类型无砟轨道结构受力的影响,同时对CRTSⅢ型板式无砟轨道底座板凹槽限位优化为凸台限位方案以及下部设置沥青混凝土封闭层的影响进行分析。研究结论:(1)路基冻胀变形幅值越大,冻胀波长越小,无砟轨道结构层应力均越大;(2)双块式无砟轨道在路基冻胀下道床板和支承层应力较大,易产生开裂,不宜应用于季冻区;(3)底座板限位凹槽是CRTSⅢ型板式无砟轨道在基础冻胀变形下的受力薄弱环节,将其优化为凸台后,能够较大程度降低结构在基础变形下受力;(4)在CRTSⅢ型板式无砟轨道底座板下设置沥青混凝土层时,轨道板及底座板应力均有降低趋势,沥青混凝土层弹模越低,应力降低幅度越大;(5)本研究结论可为基础冻胀变形控制标准的制定和季冻区高速铁路无砟轨道的选型提供参考。  相似文献   

17.
季节性冻土区路基冻害一直是困扰铁路工程建设和运营的核心问题。针对兰新铁路西段路基冻害严重的问题,探讨不同工程措施对路基冻融循环过程中含水率变化的影响,以及含水率对路基冻结深度及冻胀变形的影响规律。研究结果表明,季节性冻结对兰新铁路西段路基含水率影响的范围在0.4~0.8m,影响深度有限;“隔一挖一”、“隔三挖一”等工程措施能够有效降低路基含水率和冻胀量:含水率降低2%~5%,冻胀变形减少50%~70%。  相似文献   

18.
沈丹客专穿越我国东北地区季节性冻土区,为减小路基冻胀和融沉造成的不均匀变形,设计时采用了换填路基材料、改善基床结构、设置防冻胀层、加强地表水与地下水排泄等路基防冻胀措施。通过对沈丹客专三个完整冻融周期(2012~2015年)人工观测和自动监测数据的综合分析,研究路基冻胀变形发生、发展和变化的规律。结果表明:沈丹客专路基冻胀变形的发展变化过程可划分为冻胀初始波动、冻胀快速发展、低速稳定持续发展、融沉波动、融沉稳定5个发展阶段。宜在建设期补强防冻胀设计,以更好地控制路基冻胀。  相似文献   

19.
基于对寒区哈(尔滨)齐(齐哈尔)铁路客运专线泰康试验段路堤的地温与变形监测资料分析,研究了严寒地区路堤阴阳面的地温和变形差异。测试和计算结果表明:(1)右侧(阴面)路肩和坡脚的最大冻深均大于左侧(阳面)相同位置;(2)地温大多数时间呈左高右低现象,同时阴、阳坡路基浅层相应深度处的温差不会随时间推移和埋深增大而完全消失,但阴、阳坡路基温差逐年减小并趋于恒定,且温差波动幅度随埋深逐渐减小;(3)基床表层阴、阳面各测点的冻胀起始时间一致,而阴面的融沉起始时间却比阳面晚一个月;当路堤浅层地温处于-2~0℃且冻结层上下同时发生融化时,路基冻胀显著,此时产生的冻胀量占总冻胀量的40%左右;(4)施工完成初期,路堤浅层和基底在阳面的累积沉降量较阴面大;距离坡脚越近,基底阴阳面沉降差异越明显,但该差异逐年减小。由此表明,即使有保温护道保护严寒地区冻土路基,经历多次冻融循环后,路基阴阳坡差异受外界气温影响仍然存在,但随时间推移逐渐趋于稳定。建议在严寒地区冻土路基的阳坡侧采取降低地温的措施,减小阴阳坡地温和变形差异,保持冻土路堤的整体稳定性。  相似文献   

20.
针对莫斯科-喀山高铁路基典型断面,基于非稳态相变温度场数学模型,考虑气候变暖的影响,结合沿线的气候条件,对路基地温进行数值模拟计算,分析路基10 a内地温分布及变化规律。分析结果表明:路基高度越高,施工期蓄热耗散过程越长。路基深度越深,地温周期性变化幅值越小。路基横向地温存在差异,路肩位置最大冻深普遍大于线路中心处,其差值最大可达1.1 m。路基最大冻深基本在2.0~3.5 m深度范围内。路基融化过程为双向融化,开始双向融化时刻约在4月初,融化期路基顶部、路肩及坡脚位置附近存在冻土核现象,由此提出设计和施工运营过程中,需密切关注路基冻深范围内冻土的土体性质变化以及横向地温差异可能导致的横向变形。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号