首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
针对机车制动时的脱轨现象,研究纵向压钩力作用下13号车钩的稳钩原理。以4台SS3B型机车建立多机重联牵引3 000 t货物列车的动力学模型,机车车辆间的连接采用13号车钩,对其在30‰坡度长大下坡道上的稳钩能力进行分析。研究表明:采用止挡限位方式提供稳钩力矩的13号车钩,在其水平摆动到止挡位置后,其连接形成刚性的接触,当车钩受压时易导致机车的轮轴横向力和脱轨系数峰值瞬间增大,但持续作用的轮轴横向力和脱轨系数均在安全限制以内。结果表明,采用13号车钩的SS3B型电力机车在30‰坡道上能承受的最大纵向压钩力在1 100 kN左右。结论指出,列车制动时产生的纵向压钩力会导致机车车轮发生偏磨现象。  相似文献   

2.
重载列车纵向冲动分布试验研究   总被引:1,自引:0,他引:1  
通过1万t和2万t重载列车的运行试验,得到重载列车在不同的货车和机车编组方式、线路工况、机车牵引特性、操纵方式、制动以及车钩间隙等各种试验工况下的试验数据,并根据试验数据分析列车中不同位置货车的车钩力以及车体纵向加速度值的分布规律。分析结果表明:重载列车制动时的车钩力最大值均出现在制动开始缓解至缓解完毕的过程中;采用1+1编组方式的1万t重载列车在长大下坡道制动时的车钩力均大于平直道时;而采用1+1编组方式的2万t重载列车在长大下坡道制动时的车钩力均小于平直道时。货车在列车中所处的编组位置不同,其车体纵向冲动也不同;车钩间隙减少2/3,则车钩力可降低近1倍。主从控机车通讯及时可靠也是使不同位置的货车车钩受力分布均匀和减小列车中车体纵向冲动的重要措施。  相似文献   

3.
两万吨重载组合列车牵引和制动时的车钩力分析   总被引:1,自引:1,他引:0  
利用循环变量法建立了由2台"和谐号"机车牵引的两万吨重载组合列车的3维空间耦合模型,比较了两万吨重载组合列车当机车处于2+0、1+1+0、1+0+1这3种不同编组位置时,在主辅机车同步牵引、辅机滞后牵引、主辅机车同步制动、加装可控列尾装置制动等工况下列车的车钩力。仿真计算结果表明:在以上牵引和制动工况下,机车在1+1+0编组位置时列车整体车钩力最小;在2+0编组位置时列车的车钩力和列车冲动均最大,而1+0+1编组位置下列车性能处于1+1+0和2+0编组位置之间。在安装可控列尾装置后,在制动时列车的车钩力和纵向冲动均较未安装时减小。所以在对两万吨重载组合列车进行编组时,宜采用1+1+0这种编组方式并安装可控列尾装置。  相似文献   

4.
为了研究我国2万吨重载组合列车纵向冲动问题,以装用C80系列运煤专用敞车的组合列车为例,采用Matlab/Simulink模块建立了2万吨重载组合列车动力学模型,考虑列车编组方式、从控机车响应时间、车辆结构、钩缓装置、运行条件等因素,重点分析了1+2+1组合列车紧急制动工况下各因素对纵向冲动的影响。研究表明:列车编组方式对各车位车钩力的大小和分布影响很大,提高从控机车响应时间、装用牵引杆装置或摩擦胶泥缓冲器有利于改善车钩受力,列车以低制动初速度在陡下坡道时进行紧急制动的车钩力最大。  相似文献   

5.
27t及以下轴重混编列车纵向车钩力试验研究   总被引:1,自引:0,他引:1  
为研究掌握既有线开行27t及以下轴重混编列车的技术性能,中国铁路总公司在山西中南部铁路通道组织了"既有线开行27t及以下轴重混编列车综合试验"。通过分析试验列车在紧急制动、常用全制动以及长大下坡道调速制动工况下的纵向车钩力及其变化规律,研究混编列车的车钩力特性,为既有线开行27t轴重混编列车提供技术支持。分析认为:在各种装载和编组条件下,试验中混编列车最大拉钩力913kN,最大压钩力1194kN,超过1 000kN的车钩力只出现过一次。由于参试的27t轴重货车制动率明显小于既有通用货车,使得混编列车紧急制动时可能出现较大的拉钩力。  相似文献   

6.
建立超长重载列车纵向动力学仿真模型,并利用大秦线3万t重载组合列车长大下坡道制动试验数据对其进行验证;分析超长重载列车平直道制动工况时列车编组长度、机车无线同步控制延迟时间,以及长大下坡道常用全制动时坡度差、车钩间隙和ECP制动控制技术对纵向力的影响规律。结果表明:正常情况下,4万~12万t超长重载组合列车编组长度对平直道常用全制动和紧急制动时列车最大纵向压钩力影响较小,均未超过2250 kN的安全限值;超长重载列车在平直道紧急制动时,同步控制延迟时间超过5 s时列车最大纵向压钩力达到1200 kN,但仍未超过安全限值;长大下坡道中坡度差对超长重载列车最大纵向压钩力影响较大,在60 km·h-1速度进行常用全制动且纵向力不超安全限值2250 kN的条件下,4万t超长重载列车允许的长大下坡道最大坡度差为13‰,10万t仅为5‰;超长列车采用新型无间隙车钩和ECP制动技术对减少变坡区段常用全制动时的列车最大纵向压钩力不明显。  相似文献   

7.
大秦线重载列车运行仿真计算研究   总被引:10,自引:1,他引:9  
针对大秦线的实际情况,通过建立重载列车运行仿真计算模型,研究大秦线不同编组重载列车的牵引、制动等技术参数,为大秦线组织重载列车试验、制订合理的操纵方法和保证列车安全、可靠、正点、高效、节能运行提供技术依据.仿真计算表明采用LOCOTROL技术,运用合理的操纵方法,按照SS4型机车(1 2 1)和(4X5000t)编组方式以及HXD1机车(1 1 0)编组方式牵引2万t组合列车,均能够满足大秦线运行时分以及长大下坡道对循环制动再充风时间的安全性要求.采用HXD1型机车(1 1 0)编组方式牵引2万t列车的最大纵向力比SS4型机车(1 2 1)编组方式的稍大,紧急制动最大纵向力一般在2000 kN以下,常用全制动最大纵向力为1000 kN左右,均有一定的安全裕量.仿真计算结果与实际试验结果相吻合,为大秦线成功开行2万t级重载组合列车提供了技术支持.  相似文献   

8.
不同轴重货物列车编组方案的计算分析   总被引:1,自引:0,他引:1  
通过列车纵向动力学仿真软件,建立27t轴重通用货物与23t和21t轴重车辆混编的纵向动力学模型。通过仿真分析得到27t轴重及以下通用货物列车以各种轴重混编、空重混编在一定的线路条件下进行紧急制动时的纵向力分布规律,对列车的编组方式进行对比分析,提出不同轴重货物列车合理的编组方式。  相似文献   

9.
列车空气制动与纵向动力学集成仿真   总被引:2,自引:0,他引:2  
魏伟  赵旭宝  姜岩  张军 《铁道学报》2012,34(4):39-46
长大列车纵向冲动一直是重载列车发展的瓶颈,空气制动不同步是列车纵向冲动的根源,制动特性试验方法已不能够满足仿真各种列车编组的纵向冲动分析的需求,特别是多机车不同步动作、列车中有可控列尾装置等使得试验基础上的制动特性更具有局限性,因此获得适用性更广的制动特性成为纵向动力学研究的首要问题。本研究开发了列车空气制动与纵向动力学联合同步仿真系统,该系统基于消息机制,能够在运行过程中改变列车驾驶指令。介绍列车制动系统和纵向动力学同步仿真基本原理,气体流动理论,列车管压强、缸内压强计算方法,机车牵引、动力制动,缓冲器特性、摩擦系数、纵向冲动等计算方法。仿真计算典型长大列车制动特性和纵向冲动特性并与试验结果进行比较,与试验结果吻合较好。该仿真系统适合于模拟各种编组列车在各种线路运行过程中制动力与车钩力等重要参数,为制动系统和列车纵向冲动等研究提供方法和手段。  相似文献   

10.
承受纵向压力时HXD2型重载机车动力学问题研究   总被引:1,自引:0,他引:1  
针对HXD2型重载机车牵引试验中安全性指标超限的问题,对DFC-E100型钩缓装置及其原型车钩受纵向制动压力下的作用原理进行了分析,根据DFC-E100型钩缓装置的试验数据建立了车钩动力学模型,并将其应用到两台HXD2机车牵引重载列车的分析模型中,对承受纵向压力时重载机车的动力学问题进行研究.结果表明大摆角车钩必须具有对中复位功能;纵向压钩力和对中复位功能对机车轮缘磨耗有显著影响.  相似文献   

11.
针对目前在复杂线路上动力分布式重载组合列车机车制动的不足,提出了一种新的机车智能制动控制方法,该智能制动控制方法能按照制动时机车所处轨道状况及机车车钩力大小对机车电制动进行相应的模糊控制。在介绍重载组合列车动力分布式系统基本原理及特点的基础上,依据列车纵向动力学理论,在MATLAB/SIMULINK中建立了2万吨组合列车仿真模型。仿真结果从理论上证明了,与现有机车制动方式相比,该机车智能制动控制方法能减小组合列车最大车钩力,提高组合列车运行安全性。  相似文献   

12.
根据重载货物列车和高速旅客列车的发展需要,从列车运用工况,编组条件,司机操作方法,线路条件,机车缓冲装置和制动装置等因素出发说明电力机车的纵向力以启动和车长阀制动工况为主,重载牵引用的电力机车应用新型的大容量缓冲装置,高速旅客列车牵引用的电力机车则可以采用2号或G1号缓冲装置。  相似文献   

13.
为了验证重载列车牵引与电制动模型可靠性,以HX_D1型8轴9 600kW电力机车为研究对象,使用列车空气制动与纵向动力学联合仿真系统(TABLDSS)分别对惰行、牵引和电制动工况下的速度、车钩力等参数进行仿真计算并与试验比较。结果表明:车辆运行基本阻力模型在惰行工况下能够很好的模拟列车瞬时速度变化,最大误差0.9km/h;上坡道牵引工况下的仿真速度与试验最大误差在±1km/h内,第4车车钩力最大误差3.2%;下坡道制动工况下仿真速度误差0.8km/h,第4车车钩力最大误差3.7%,证明了建立的车辆运行基本阻力、牵引与电制动模型是准确的。  相似文献   

14.
基于列车纵向动力学理论和车辆—轨道耦合动力学理论,建立考虑钩缓系统中车钩纵向、横向和垂向作用力的重载列车—轨道耦合动力学模型。以机车牵引万吨列车为考核工况,分析牵引和制动时机车的受力特点,研究牵引力、制动力及车钩力对机车运行性能的影响过程和影响程度,并对理论模型进行试验验证。结果表明:在牵引、电制动及紧急制动工况下,直线线路上机车的轮重分别较惰行工况降低了约13,7和4kN,单纯的牵引或制动力可降低轮轨横向蠕滑力,间接造成轮轨横向力的小幅增大,但轮轴横向力基本不变;车钩力可通过车钩摆角产生横向分量,并传递到轮轨界面,改变轮轴横向力的整体变化趋势;若车钩偏转3°,在电制动工况下,前部机车承受的压钩力较大,引起的轮轴横向力增幅达18kN,在紧急制动工况下,机车上的压钩力幅值小,引起的轮轴横向力在8kN以内。  相似文献   

15.
重载组合列车纵向冲动对机车动力学性能有很大影响,在研究重载组合列车的安全性问题,建立机车动力学分析模型时需单独建立钩缓装置的子结构模型,并将其与传统的机车动力学模型相结合进行分析。机车动力学整体模型分为直线受压模型和曲线受压模型两种,二者的区别在于前者可以采用换算的全局加速度表达纵向压钩力,而后者只能将名义压钩力折算成每节机车的制动力,并进一步折算到每个轮对。钩缓装置子模型的建立必须以钧肩力的杠杆结构、车钧间隙、缓冲器的特性曲线和初压力作为边界条件。应用模型计算直线运行情况下机车车钩最大自由摆角小于4°。HXD2型机车“1+1”牵引2万t重载组合列车的安全性线路试验结果表明建立的模型是正确可靠的。  相似文献   

16.
陈会波 《中国铁路》2014,(11):32-36
为适应朔黄铁路不同机车型号间万吨列车编组运行需求,优化运输组织,提高运输效率,提出了SS4B型、SS4G型两种不同机型电力机车编组优化改进方案,通过建立机车制动力和电机电流的数据模型,对朔黄线直流电力机车控制特性参数进行优化,混合编组万吨列车在实际运用中收到良好效果。  相似文献   

17.
重载组合列车机车缓冲器关键技术参数研究   总被引:2,自引:0,他引:2  
根据大秦线开行2万t重载组合列车对机车缓冲器可靠运用的要求,应用列车纵向动力学软件建立2万t重载组合列车多质点模型和缓冲器数值模型;按照列车紧急制动、常用制动和长大下坡道区段循环制动3种工况,分析比较机车分别装用DFC—E100缓冲器、MT—2缓冲器和QKX100型弹性胶泥缓冲器以及在列车紧急制动工况条件下改变DFC—E100型缓冲器最大阻抗力、行程和初压力等关键技术参数对2万t重载组合列车纵向动力学性能的影响。结果表明:机车装用不同型号缓冲器时的列车最大纵向力均在2 200 kN以内,中部机车的最大纵向力未超过1 700 kN;适宜于2万t重载组合列车的机车缓冲器的额定阻抗力、行程和初压力分别为2.25 MN,110 mm以下和150 kN左右。  相似文献   

18.
在分析重载机车102型钩缓装置结构特点的基础上,明确其受拉状态下最大自由转角大于受压状态的特点;通过唐包线重载列车实车试验数据,评价102型钩缓装置在双机重联牵引运用环境下区间运行和侧向通过12号道岔工况下的重载适应性,分析车钩最大自由转角和机车二系悬挂横向刚度对重载机车安全性的影响;采用加权离散方法,建立可模拟车钩钩肩止挡和缓冲器偏压特性的102型钩缓装置动力学子模型,基于此搭建机车位于双机重联位和中部从控位的列车动力学模型并进行验证,仿真分析102型钩缓装置在组合编组运用环境下的重载适应性。结果表明:102型钩缓装置能够适应双机重联牵引单元万吨列车的安全运用要求,在侧向通过道岔时具有较好的线路曲线方向跟随性;机车二系悬挂刚度、车钩最大受压自由转角对机车运行安全性具有明显影响;在满足现场车钩连挂需求的前提下合理控制车钩最大受压自由转角,102型钩缓装置能够适应双机组合牵引2万t列车的安全运用要求。  相似文献   

19.
3万t重载列车是目前国内重载运输行业的重点研究对象,ECP方式是降低重载列车车钩力的重要手段。文章针对3万t重载列车,采用仿真方法研究了ECP电控信号传播方式的传播特性、列车制动能力和纵向冲动水平。研究表明,在3种ECP电控信号传播方式下,列车电控装置动作时间差为2.66~3.97 s,列车中制动缸活塞伸出时间差为2.80~3.80 s, 3种方式下列车制动能力差异不大,制动过程中产生车钩力最小的ECP传播方式为主控机车发送ECP信号的同时从控机车向前后发送ECP信号,紧急制动时最大车钩力为-1 565 kN。通过探究ECP信号传播方式对3万t重载列车制动工况纵向冲动的影响,可为3万t列车电空制动方案设计提供参考。  相似文献   

20.
根据列车纵向动力学原理,利用VC编制列车纵向动力学仿真计算软件。利用仿真计算软件,对重载组合列车在平直道上牵引工况下的纵向动力学性能仿真计算和分析,以帮助确定合理的列车编组和试验方案提供理论依据。针对重载组合列车3种不同编组情况下的纵向性能,研究在平直道上牵引工况下纵向动力学性能,从而得出比较合理的编组,并且通过计算不同提手柄时间的最大车钩拉压力、最大正负加速度以及列车纵向冲动,分析不同提手柄时间对列车纵向性能的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号