首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
商合杭铁路芜湖长江公铁大桥主桥为主跨588m的钢箱桁组合梁斜拉桥。为确定该桥在施工期和运营期的抗风安全性,对其开展抗风性能研究。分别进行主梁节段模型、桥塔气弹模型、全桥气弹模型及并列拉索风洞试验,研究该桥在成桥状态及最不利施工状态的风致响应。结果表明:施工和成桥状态下,该桥主梁的颤振临界风速均远大于颤振检验风速,颤振稳定性较好;不同风速下均未观测到明显涡振,涡振性能满足规范要求;设计风速内,不同来流偏角下桥塔均未发生驰振及影响施工的大幅涡振,动力稳定性良好;实桥风速达到84.0m/s时主梁仍未发生颤振、横向屈曲、扭转发散等静力失稳现象,也未发现影响施工的涡振和大幅抖振;最不利工况下,下游拉索在风速37.4m/s时即出现一阶大幅尾流驰振,设置刚性连接杆可以有效抑制尾流驰振现象。  相似文献   

2.
采用空间有限元模型分析荆岳铁路洞庭湖大桥主桥在成桥运营状态和施工全过程中的动力特性,评估主桥抗风安全性能。分析表明,中塔外边的长索对约束中塔纵桥向位移有一定的作用,过渡墩、辅助墩对主梁的横向和竖向振动的制约作用比较明显。主梁为钢桁梁,扭转刚度大,各工况的主梁弯扭耦合颤振和分离流扭转颤振的临界风速均超过了各自的主梁颤振检验风速,满足抗风安全性要求。  相似文献   

3.
为了揭示主梁基本气动外形对悬索桥颤振性能的影响,以一座大跨悬索桥为例,分别选取流线型箱型、边箱型与分离式双箱型3种典型断面作为大桥主梁的基本气动外形。采用强迫振动法并基于CFD数值模拟获取各断面的气动参数,并采用阶跃函数法建立主梁的气动自激力时域模型;然后利用ANSYS平台进行全桥时域颤振有限元分析,得到各断面对应的颤振临界风速与颤振频率。结果表明:分离式双箱断面的颤振性能最佳,其颤振临界风速达到109.6 m/s,远高于其他2种断面;流线型断面与边箱型断面的颤振临界风速分别为89.4 m/s与86.9 m/s,两者的颤振性能相差不大;由频谱及相位分析可知,3种断面的颤振频率介于竖弯与扭转基频之间,颤振形式表现为不同程度的扭弯耦合振动。  相似文献   

4.
为寻找合理可行的颤振控制气动措施,使超千米跨径斜拉桥的颤振临界风速超过80m/s,以主跨1 400 m的钢箱梁斜拉桥设计方案为背景,通过节段模型风洞试验对中央稳定板、中央开槽、悬臂水平分离板、风嘴锐化等各种超千米斜拉桥颤振控制气动措施的效果进行了研究.研究表明:1.5 m悬臂水平分离板加40°锐化风嘴角的颤振控制组合气动措施,能够显著改善桥梁的颤振性能、实现颤振临界风速不低于80 m/s的目标;从颤振稳定性角度验证了1 400 m斜拉桥方案的可行性;超千米斜拉桥的颤振稳定性的富余度往往不高,设计必须考虑斜风效应的不利影响.  相似文献   

5.
为阐明钢-混组合梁形式的斜拉桥抗风性能,以某钢-混叠合梁大跨度斜拉桥为工程实例,采用基于CFD方法的数值模拟,开展大跨度斜拉桥钢-混叠合梁式主梁截面气动力参数的计算分析,同时研究了大跨度斜拉桥颤振和抖振特性。研究结果表明:根据颤振分析结果,颤振风速为63.7m/s小于颤振临界风速为97.6m/s,颤振性能良好;由抖振响应分析结果可知,桥梁具有良好的风致振动性能。  相似文献   

6.
针对云雾特大桥主桥抗风性能,采用三维有限元数值模拟和节段物理模型试验的方法,对其成桥态和施工态下的颤振、驰振和涡激共振稳定性进行研究,基于三维有限元数值模型计算该桥在成桥态和施工态下的关键振型及频率,依据数值计算结果和《规范》,进行了主桥节段试验。结果表明:各计算工况下,颤振临界风速均大于该斜拉桥颤振检验振动风速(47. 9 m/s);均匀流场作用下的成桥态扭转振动和竖向振动均发生了较大幅度的涡激共振,特别是在+3°风攻角下的竖向振幅(253 mm)超过了规范限值(156. 9 mm),但在紊流场风环境下不会发生涡激共振; 0°风攻角下,成桥态主梁断面的阻尼系数、升力系数和扭矩系数分别为1. 331、-0. 043、-0. 003,驰振力系数恒为正,驰振稳定性满足规范设计要求。  相似文献   

7.
针对目前悬索桥加劲梁气动翼板颤振主动控制数值计算方法的局限性,提出采用流固耦合方法对加劲梁上部气动翼板的颤振控制进行分析。通过对Fluent软件二次开发,建立加劲梁-气动翼板系统流固耦合数值仿真计算模型,分析桥梁的颤振性能。以大贝尔特东桥为背景,采用流固耦合方法分析加劲梁上部设置气动翼板前、后该桥的颤振临界风速,研究气动翼板角速度对颤振临界风速的影响。结果表明:该桥颤振临界风速的数值仿真计算结果(72.0~74.0m/s)和节段模型风洞试验结果(70.0~72.9m/s)吻合较好;加劲梁上部设置气动翼板后,当前气动翼板与加劲梁扭转方向相反、后气动翼板与加劲梁扭转方向相同时,能显著提高加劲梁颤振临界风速;加劲梁最大扭转角随气动翼板角速度的增大逐渐减小。  相似文献   

8.
随着桥梁设计跨度增大,结构对风荷载作用极为敏感。采用CFD数值模拟方法研究桃花峪黄河大桥主梁断面颤振问题,根据分状态强迫振动法给出了颤振导数识别方法建立了数值计算模型,经计算得出结论:在+5°风攻角下造成竖向振幅为0.03 m所需风速约为13.2 m/s,在+3°风攻角下造成相同竖向振幅所需风速约为14.2 m/s;在+5°风攻角下造成扭转振幅为6°所需风速约为13.1 m/s,在+3°风攻角下造成相同扭转振幅为6°所需风速约为14.0 m/s,风攻角是颤振重要因素;经模拟气动流场得到主梁结构在0°、+3°及-3°攻角下颤振临界状态涡量变化情况可知随着风速增大涡量图为一对细长互不干涉正负涡量逐步增大至正负交替漩涡,在尾流处耦合成2个相互交替大漩涡。  相似文献   

9.
跨径1 400 m钢斜拉桥的可行性   总被引:1,自引:0,他引:1  
从结构及经济的角度,阐述跨径1400m钢斜拉桥的可行性。由于钢主梁的重量很大程度地影响斜拉桥的总造价,提出一种保证静、动力失稳安全的钢主梁最小重量的计算步骤。对于静力失稳,进行了面内荷载条件下的弹塑、有限一位移分析及随位移而变的风荷载条件下的弹性、有限一位移分析;对于动力失稳,则进行了多模态颤振分析。分析结果表明,横向扭转屈曲的静力临界风速控制主梁的尺寸。最后,将大跨径斜拉桥方案与悬索桥方案作了简单比较。  相似文献   

10.
顾超 《世界桥梁》2012,(1):14-18
越南富美桥为一座(162.5+380+162.5)m的混凝土斜拉桥,主梁为现浇钢筋混凝土π形梁,梁高较小(2.001~2.305m),索距较大(10m),横梁和梁上拉索锚头预制,边主梁和桥面板现浇,主梁与锚墩固结。采用1套挂篮进行主梁施工,建造工期约30个月。介绍该桥设计及审查所采用的规范、斜拉桥的结构布置及审查过程中的计算分析和验算细节,包括:有限元模型及整体分析,非线性施工过程分析,地震反应分析,船撞分析,拉索破坏、疲劳及换索分析,空气动力分析,活载效应以及环境因素。  相似文献   

11.
王骑  廖海黎 《桥梁建设》2012,42(Z1):1-6
粉房湾长江大桥为双塔双索面半飘浮体系斜拉桥,为检验该桥在强风下的颤振稳定性及在常遇风速下的涡激振动性能,对该桥动力特性进行计算并按照1∶45.8的几何缩尺比制作6个标准主梁节段模型进行风洞试验,针对试验结果提出在主梁风嘴边桁处设置导流板的制振措施.计算和试验结果表明,该桥结构刚度大、振动频率高,在检验风速范围内不会发生颤振失稳和静风失稳,满足抗风设计要求;通过在主梁风嘴边桁处设置导流板,能够实现对桥梁涡激共振的有效控制,使其满足规范要求.  相似文献   

12.
部分斜拉桥是一种新型桥梁,其整体刚度比常规梁式桥要小,颤振问题比梁式桥可能突出,为了解该类桥梁的颤振稳定性,以海南某项目大桥主桥为背景,开展数值分析研究。采用有限元软件ANSYS建立该桥模型,对该桥成桥状态及最大双悬臂状态的动力特性、颤振稳定性进行了分析。分析结果表明,该桥无论是在成桥状态还是在最大双悬臂状态下,颤振临界风速都远高于颤振检验风速,具有足够的安全性。  相似文献   

13.
营口辽河公路大桥抗风性能研究   总被引:1,自引:0,他引:1  
以营口辽河公路大桥为背景,研究斜拉桥在施工阶段及成桥状态的抗风性能。对斜拉桥在基本风速与设计基准风速及颤振检验风速的确定,气动参数计算,弯扭耦合颤振与分离流扭转颤振的颤振稳定性分析,成桥状态、最大单悬臂状态、最大双悬臂状态、桥塔施工状态的风荷载及风载响应4个方面进行研究。按平板近似公式估算,得出该桥桥位处的基本风速、桥面高度处的设计基准风速、成桥状态的颤振检验风速、施工阶段的颤振检验风速。用ANSYS大型结构分析程序进行分析和计算。该斜拉桥方案无论在成桥状态或施工最不利状态均满足颤振稳定性要求。给出了成桥状态、最大单悬臂状态、最大双悬臂状态以及主塔施工状态的桥塔风载内力及主梁风载位移。  相似文献   

14.
稀索转体斜拉桥主梁采用支架法施工的技术要点   总被引:2,自引:0,他引:2  
稀索转体斜拉桥主梁具有其独特的结构特点和施工要求,采用支架法施工主梁时,对此应给予高度重视,以保证施工过程中支架及梁体的结构安全.本文根据某桥的施工实践,介绍采用满铺钢管支架法施工该桥主梁的技术要点.  相似文献   

15.
针对目前主动控制面研究中存在的不足,通过风洞试验探讨了控制面扭转运动对主梁周围流场的干扰效应,按照现代控制理论对动态系统的描述方式,建立了主动控制面颤振控制的状态空间模型,并以一座主跨3 000m的悬索桥为工程背景,采用二次型最优控制算法对主动控制面系统的颤振控制效果进行了数值仿真分析,讨论了控制面颤振控制参与模态的选择方法,分析了控制面布置长度和作动器数量对其颤振控制效果的影响。研究结果表明:在控制面宽度为1/20梁宽,距离主梁3.0倍梁高时控制面扭转运动会对主梁周围流场特别是前部区域的压力脉动产生影响,但控制面振动所造成的那部分卓越脉动压力在总脉动压力中的比例不足10%,在控制面气动力模型中可以忽略干扰效应产生的气动力;相比于模态幅值比,依据模态能量比选择参与模态进行颤振分析更为有效;安装主动控制面后主跨3 000 m的悬索桥颤振临界风速提高了近1倍,且在0~80m·s-1风速范围内可能发生的颤振形态均得到了有效控制,控制面的颤振控制效果随其布置长度和作动器数量的增加而逐步提高;作动器超过2组以后,作动器数量虽不会进一步提高悬索桥颤振临界风速,但控制面可以被划分为更多独立的部分,控制系统的可靠性将得到进一步增强。  相似文献   

16.
沈阳市富民桥为(89+242+89)m的折线形双塔单索面预应力混凝土斜拉桥.主梁为近似倒三角形断面,单箱三室.简要叙述富民桥施工过程中主梁重点节段的局部应力分析过程,通过空间有限元计算结果初步总结主梁纵向内力在梁体内的分布特点,并对斜拉索锚下的混凝土进行局部承压应力分析.  相似文献   

17.
借助一种三维颤振分析方法,分析一座主跨618 m悬带桥的三维颤振性能,并与相同跨径的悬索桥进行对比,进一步探讨悬带桥的多模态参与效应、侧向自激力效应及节段模型试验的模态选取等问题;同时还对悬带桥进行多种组合下的两模态二维颤振分析及节段模型风洞试验。研究结果表明:与悬索桥的扭转模态颤振驱动机制不同,悬带桥的颤振由侧向-扭转耦合模态分支驱动,具有更低的颤振临界风速;悬带桥的颤振形态表现为侧向、竖向和扭转方向耦合振动,侧向自激力对颤振临界风速的影响较小;侧弯-扭转耦合模态及竖弯模态的模态组合具有最低的颤振临界风速,二维颤振分析结果与三维颤振分析结果基本一致,说明其多模态参与效应不明显,由此可见三维颤振分析及节段模型中模态合理选取的重要性。研究结果可为其他新颖体系大跨径桥梁的颤振研究提供参考。  相似文献   

18.
叠合梁断面为典型钝体截面,容易出现气动不稳定问题。为研究三塔叠合梁斜拉桥的抗风性能,以某三塔双跨叠合梁斜拉桥为例,通过有限元软件建立桥梁成桥状态和最大双悬臂施工状态有限元模型,计算分析其动力特性,再进行节段模型风洞试验研究桥梁在-5°、-3°、0°、+3°和+5°风攻角下的颤振稳定性和涡激振动性能。研究结果表明:该三塔双跨斜拉桥颤振临界风速大于颤振检验风速,具有良好的颤振稳定性;成桥状态出现了较为明显的涡激振动现象,在低风速区涡激振动幅值小于规范允许值;虽然在高风速区涡激振动幅值超过了规范允许值,但是出现概率很低,对桥梁安全和使用性能不会造成明显影响;施工状态涡激振动幅值远低于规范限制,涡振性能良好。  相似文献   

19.
为给大跨度斜拉桥的抗风设计提供参考,以苏通长江公路大桥(主跨1 088m的双塔双索面钢箱梁斜拉桥)为研究对象,利用结构健康监测系统采集的台风"海葵"全过程风环境和结构振动数据,采用频谱分析和数理统计方法进行了该桥风致抖振响应的实测研究。研究结果表明,该桥斜拉索和主梁的抖振加速度RMS值总体上随风速的增大而增大;就本次实测而言,该桥主梁和斜拉索的抖振加速度响应在风速大于15m/s时陡然增大,值得引起注意;与其他斜拉桥相比,该桥斜拉索在台风下的抖振响应较小,验证了其减振措施的有效性。  相似文献   

20.
泰州长江公路大桥三塔悬索桥的颤振稳定性   总被引:1,自引:0,他引:1  
为研究三塔悬索桥的动力特性及颤振稳定性,以泰州长江公路大桥主桥为背景,开展数值分析和风洞试验。采用有限元软件ANSYS建立该桥模型,分析中塔对结构振型的影响,分析结果表明:中塔的设置使影响结构颤振稳定性的关键模态的频率降低很多。对节段模型进行颤振稳定性风洞试验,试验结果表明:将检修车轨道移到采用尖角型风嘴的上斜板位置后,模型在+3°风攻角的颤振临界风速达到63.2 m/s。利用三维耦合颤振分析方法对该桥成桥状态+3°风攻角下桥梁结构的颤振稳定性进行分析,分析结果表明:结构颤振时第15阶振型占绝大部分能量,说明颤振主要以扭转形态为主。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号