首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
风浪作用在结构上会对结构产生动力作用,从而影响到结构的内力及响应。为研究风浪作用下大跨度连续刚构桥的动力响应规律,利用通用有限元软件ANSYS建立了刚构桥的有限元模型,并以经典理论为基础,在风浪耦合关系的基础上建立了风场和波浪场的数值模型,此数值模型在抖振力响应的基础上考虑了波浪对风场的影响。对大跨度刚构桥在风浪荷载共同作用下的动力响应结果进行了分析。研究结果发现:对比风荷载、波浪荷载单独作用及风浪荷载共同作用下桥梁不同位置的横向位移响应结果,墩顶位移相对增幅要大于跨中位移相对增幅,波浪荷载作用对桥梁横向位移响应的影响从桥墩到跨中依次减小;对比风荷载、波浪荷载及风浪荷载共同作用下桥梁墩底剪力及墩底弯矩响应结果,波浪荷载作用对墩底横向剪力、墩底纵向剪力、墩底绕横桥向弯矩和绕纵桥向弯矩均有明显影响,波浪荷载作用对墩底剪力的影响很大,对墩底弯矩的影响较大;风浪荷载共同作用并不是风荷载、波浪荷载单独作用下响应的简单叠加,波浪形成时会对风场产生影响,除了随机湍流风速以外,波浪会引起与波浪同步的上方气流速度变化,在风浪场中的风速模拟时,需要考虑波浪对上部气流的影响,因此对横向位移响应影响较大的主要作用为风荷载作用,但并不意味着可以忽略波浪荷载的作用。  相似文献   

2.
为研究桥上风屏障局部破坏对桥梁列车行车安全性的影响,以某四塔公铁两用斜拉桥为背景,进行列车动力响应和行车安全性影响参数分析。推导列车通过风屏障破坏段时车辆和桥梁的风荷载,并通过桥梁和列车节段模型风洞试验,测得计算所需气动力系数;在此基础上建立风-车-轨-桥耦合振动模型,研究了风屏障破坏段长度、平均风速和列车车速对列车动力响应及行车安全的影响。结果表明:突风效应会导致列车横向位移达到最大值,遮风效应会使列车横向加速度达到最大值;随风屏障破坏段长度、平均风速和列车车速的增加,列车动力响应随之增加;风屏障破坏会增加列车的轮重减载率和脱轨系数,并且高风速下各节车辆在风屏障破坏段的脱轨系数差异较大;仅在风速不大于10 m/s时,列车可以180 km/h的车速安全通过风屏障破坏段。  相似文献   

3.
采用MIDAS/Civil软件建立了云南湃街渡大桥的桥梁结构力学模型。对模型的自振特性和动力时程分析进行了研究,分析了不同墩高下桥梁结构振型特征和弹性时程分析,获得了刚构桥下不同桥墩高度的抗震性作用。研究结果表明:墩高越高,则桥梁刚度下降,整体结构越柔软。在前十阶振型中,3个模型均以横弯为主,桥墩较高时易形成平面外弯曲变形;桥墩较低时更多的是表现出横弯和竖弯墩高的整体性改变,且Y方向最易出现失稳;顺桥向和竖向激励下,主梁弯矩随墩高的变化影响较小,而横向激励对主梁弯矩造成很大影响,墩高相同时,由于桥梁横向刚度小于纵向和竖向,因而受横向地震响应较大,是重点考虑区,而竖向地震激励作用更易增加结构的竖向位移和主梁的内力作用;桥梁地震内力最大值通常出现在墩底处,主梁内力最大值出现在中跨跨中或主梁根部。  相似文献   

4.
为了考察风速空间分布的不均匀性对大跨度桥梁空气静力行为的影响。采用风速的空间分布计算模型,考虑结构变形对静风菏载的非线性影响因素,提出了考虑风速空间非均匀分布的大跨度桥梁非线性空气静力分析方法,并编制了计算程序,结合江阴长江大桥进行了分析和研究,揭示了风速空间分布的束均匀性对大距度桥梁空气静力行为影响的程度和规律。  相似文献   

5.
桥梁颤振检验风速修正系数研究   总被引:1,自引:0,他引:1  
陈艾荣  黄鹏 《公路》1996,(12):25-28
讨论了由于脉动风的不规则性和空间相关性对大跨桥梁颤振检验风速修正系数的影响,并根据不同的地表类别,给出了桥梁颤振检验风速修正系数的计算结果。  相似文献   

6.
风荷载是桥梁结构设计过程中需要考虑的重要因素之一,特别是对于山区跨峡谷等特殊地形,桥址所在地区风速和风向变化大,在其结构安全性验算环节必须要考虑风荷载对桥梁结构受力的影响。以吉茶高速公路矮寨特大悬索桥为例,对桥址区风速风向进行观测,建立风速概率密度曲线并对观测结果作了分析;利用ANSYS有限元模型,根据桥址处的风速和设计参数计算研究了静风荷载对桥梁主要构件内力的影响,同时对桥梁静风稳定性进行了基于三维非线性优化理论的验算。  相似文献   

7.
强风环境下斜拉桥车桥系统动力响应分析研究   总被引:2,自引:2,他引:0  
基于模态综合分析理论,在推导复杂车辆模型刚度、阻尼矩阵和建立车桥系统风荷载模型的基础上,提出一种全面考虑动力风载效应的车桥系统动力响应分析方法,结合桥例对强风环境下的斜拉桥车桥系统的动力响应进行了分析研究。结果表明:强风下桥梁竖向位移响应受风载影响显著,横向位移响应主要由风荷载控制;低风速下桥梁的振动加速度响应受风荷载影响较大;风荷载引发的桥梁振动对车辆竖向位移和加速度响应影响较大,横向响应由风载和桥梁响应控制,风载对车桥系统动力响应影响明显。所提出的方法具有较高的精度和分析效率,可为其他类型大跨桥梁的相关分析提供参考。  相似文献   

8.
为研究风向对基本风速的折减,以及其与地形效应对山区桥梁设计风速确定的共同影响,以一座山区大跨度桥梁为研究背景,采用风速风向联合分布函数和计算流体力学软件FLUENT对桥址区的风场进行数值计算。首先利用桥位附近气象站的风速资料,在风速观测数据不足的情况下,采用极值Ⅰ型分布获得了风速的月极值分布和年极值分布的关系,并由此计算出不考虑风向影响的百年一遇基本风速。再应用风速风向联合分布函数,计算考虑风向影响时各个风向的百年一遇基本风速,探讨风速风向联合分布对基本风速的折减效应;并应用FLUENT软件对2种情况下的桥位区风场进行数值模拟计算,分别得到不同风向下桥位处的最大风速(即设计风速)。研究结果表明:风速风向联合分布和地形效应会对设计风速的确定产生影响。若不考虑风速风向联合分布的作用,当该地区最大基本风速的风向与地形放大效应最大的方向不一致时,会使设计风速值偏于保守。最后基于研究成果提出了可用于山区桥梁设计风速确定的分析流程,该方法更具合理性和工程实用性,可为山区桥梁设计风速的确定提供依据。  相似文献   

9.
基于高墩连续刚构桥双悬臂状态的特点及横桥向一阶振型,考虑平均风荷载与结构脉动风荷载背景响应及共振响应,给出了方便工程应用的计算墩底横桥向弯矩和剪力等效风荷载及风载内力的简化计算方法。为验证简化计算方法的精度,分别采用抖振频域分析方法及简化计算方法对2个典型算例进行了分析,并与现行规范静阵风系数的结果进行比较。结果表明:简化计算方法具有较好的精度,适于工程应用;若忽略脉动风共振响应的影响,对高墩桥梁其结果将偏小较多;高墩桥梁的桥墩风荷载很大,其对墩底风载内力的影响甚至可能超过主梁,应引起足够重视。  相似文献   

10.
为研究波浪对跨海桥梁风车-桥耦合振动系统的影响,针对跨海桥梁所处风大、浪高的极端环境,建立了波浪-风-列车-桥梁动力模型,将风场视为空间相关的平稳高斯过程,高速列车采用质点-弹簧-阻尼器模型模拟,精细化全桥模型通过有限元方法建立,考虑风-列车-桥梁之间的耦合作用,波浪作为外部荷载施加到该耦合体系中。以主跨532 m某海洋桥梁为例,通过自主研发的桥梁科研软件BANSYS (Bridge Analysis System),分析了波高、风速、车速对耦合模型车辆和桥梁响应的影响。结果表明:风车-桥耦合振动体系的车辆和桥梁响应受波浪影响显著,车辆和桥梁响应在与波浪荷载一致的方向增加显著,15 m·s-1风速下,考虑波浪影响的车辆横向加速度最大值约是不考虑波浪时的1.3倍,考虑波浪影响的跨中横向位移最大值约是不考虑波浪时的22倍,而在非一致方向波浪对车-桥响应的影响较小;不同风速下,波浪对车辆横向加速度影响显著,考虑波浪影响的车辆横向加速度约是不考虑波浪时的1.2倍,而车辆竖向加速度、轮重加载率、倾覆系数等指标主要受风速的影响;波浪基频与桥梁横向位移响应谱主峰频率一致,波浪已成为影响桥梁横向位移响应的控制因素;波浪减弱了车速对车-桥响应的影响,随着波高的增加,车辆和桥梁响应对车速的变化更不敏感。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号