首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
根据国内外文献,综述现有路基堆载下软土侧向位移对桥台桩基影响的研究概况,着重介绍了桥台桩基在路基堆载下的变形规律试验、路堤下覆软土侧移对桩身的极限侧压力计算方法以及桩土相互作用计算方法等的研究成果,简要论述了存在的问题及今后进一步研究的方向。  相似文献   

2.
整体式桥台桥梁的简化计算模型研究   总被引:2,自引:0,他引:2  
提出了整体式桥台桥梁在成桥阶段计算的三维框架简化模型;然后在ANSYS基础上进行二次开发,编制了计算桩基的等代桩长和台后土压力合力的专用分析程序IABS.利用IABs程序,结合国内现有的桥梁设计软件,即可直接进行整体式桥台桥梁的实际工程设计,为该类桥梁在我国的推广应用提供了设计基础.同时还以某一实际工程的整体式桥台桥梁为研究对象,采用IABS程序对可能影响桩基等代桩长和台后土压力合力的各种结构因素进行分析,得出若干有益于该类桥梁设计的结论.  相似文献   

3.
高速公路在设计中大量采用了先建桥台再填土的施工工艺。在施工过程中,应尽量减少碾压对土压力的影响。文中通过对衡炎(衡阳-炎帝陵)高速公路八旦大桥台背碾压的现场试验,探讨了不同碾压方式对桥台土压力的影响,得出沿道路轴向的常规碾压方式和垂直于道路轴向的改进的碾压方式对土压力的影响程度与深度。  相似文献   

4.
整体桥具有使用寿命长、施工方便、造价及养护费用低等特点,目前在国内外得到了广泛应用与推广,但是,其台后土压力计算方法还缺乏深入研究。为此,以永春上坂大桥整体桥为设计背景,开展了整体式桥台-H形钢桩-土相互作用的低周往复荷载拟静力试验研究,主要研究了台后土压力大小及其衰减规律,并给出了桥台内力和台后土压力计算方法。研究结果表明:台后土压力与正向加载位移成非线性关系,且随着正向加载位移的增大而增大;台后土压力沿深度方向主要呈"三角形"与"梯形"分布,同时,台背处土压力合力作用点基本位于2/3桥台高度的埋深位置处;台后土压力沿纵桥向成指数衰减,且在台后2倍的桥台高度处基本衰减为0,即温度作用下整体桥桥台的纵向移动仅对台后2倍桥台高度范围内的土体有影响。现有研究及规范给出的方法不适用于整体桥的台后土压力计算,而所提出的台后土压力计算方法与试验、实桥监测结果较为吻合,其可为整体桥的设计及规范的制定提供参考与借鉴。  相似文献   

5.
付宏渊 《中外公路》2005,25(3):59-62
以有限元软件ANSYS为计算工具,针对少(林寺)—洛(阳)高速公路桥台和台后路堤与地基特点,模拟了试验桥台的受力和边界条件,建立了平面有限元模型。通过计算,分析了桥台土压力分布规律及台背土压力随桥台位移发生变化的规律。并将有限元的分析结果与现场土压力测试结果进行了对比分析,二者吻合较好。  相似文献   

6.
中国修建了大量的中小桥梁,桥梁伸缩装置是这些传统中小桥梁中必不可少的一种局部构件。无缝桥梁作为一种新型桥梁结构形式解决了伸缩缝造成的许多问题,但无缝桥梁的设计尚无具体规范,计算分析中有一些值得探讨的内容。笔者通过对整体式桥台台后主动土压力计算方法的比较,找出集中力等效主动土压力和主动土压力分布力直接布置在桥台台背上这计算两种方法各自的优缺点,结果表明:计算弯矩时,采用等效集中力计算是偏于安全的;计算剪力时,直接采用主动土压力分布力计算是偏于安全的。  相似文献   

7.
升温作用下整体桥台台后土压力计算方法的探讨   总被引:3,自引:0,他引:3  
对在升温作用下,整体式桥台桥梁台后土压力的计算方法进行研究。分别采用Broms法、m法及p-y曲线法计算桥台背墙后填土的水平抗力系数;采用m法及p-y曲线法计算台柱土的水平抗力系数和台桩、墩桩侧土的水平抗力系数;采用TDV软件模拟土对桩端的约束作用。通过对不同方法计算的台后土压力的对比分析,得知:在计算升温引起的整体式桥台桥梁台后土压力时,桥台背墙及台柱土的水平抗力系数计算采用m法是不适合的;桥台背墙后填土的水平抗力系数可采用Broms法计算;土对台桩及墩桩侧的水平抗力系数按p-y曲线来考虑是适合的。  相似文献   

8.
周密 《公路与汽运》2006,(2):115-116
基于库仑土压力理论,通过计算,说明了各参数对主动土压力大小影响程度的差异,并采用有限元方法对某试验桥台台背主动土压力进行了分析,得到了台背主动土压力随填土内摩擦角和台背外摩擦角变化的规律.  相似文献   

9.
汕头海湾大桥北引道工程地处冲积平原 ,地表以下 2~ 18.5m基本为流塑淤泥或厚淤泥层夹层。桥梁下部结构均采用钻孔灌注桩。在钻孔灌注桩施工前 ,先在桥台软土地基进行砂桩结合堆载预压处理 ,减少了由于软基沉降对桥台桩基产生的负摩擦力 ,达到消减负摩擦力的目的  相似文献   

10.
公路的桥台一般要求在路堤施工完成后施工,但是为了缩短工期,公路的桥台施工常常先于路基填筑。路基填筑碾压对桥台产生挤压作用,不利于桥台稳定。该文结合盐城市范公路某桥台路基填筑工程,现场监测路堤分层填筑碾压过程中桥台上的土压力和位移,根据实测数据分析结果显示,碾压对竖向土压力几乎没有影响,但大大增加了水平土压力。与土压力理论计算值比较,竖向土压力可以用土压力理论公式计算,水平土压力随填土高度增加并不是呈线性增长,当填土到达桥台高度的一半后便不再增长。  相似文献   

11.
为研究温度变化作用下,整体式桥梁台后土压力的变化及台后填土对土压力的影响,以芬兰哈维斯托大桥为例,在该桥施工过程中共安装191个仪表进行原位试验,并根据测试结果分析桥台的周期性水平位移对桥台桩基性能的影响.测试结果表明:桥台回填土密实度越好,测得的土压力越大;桥梁建成后的第1个秋季测得的土压力非常小,温度循环位移引起的土压力幅度在第1个冬季最冷的时候过去后才开始变大,土压力随温度升高而增大;整体式桥台的大直径钢管桩应力随温度变化而变化,但存在零飘现象,建议将应变计安装在桩内靠近主筋位置;两桥台的刚度不同,温度位移差异很大;大直径桥台桩的弯矩与桥台的水平位移有直接的关系.  相似文献   

12.
宋郁民  刘媛 《公路》2004,(10):68-70
在细砂土质地层中开挖基坑,若地下水丰富且水位较高,极易产生“流沙”现象。采用薄壁沉箱作为开挖的支护结构。施工快捷又经济合理。薄壁沉箱刚度较小。土压力按朗金土压力理论取主动土压力的1.2倍,比静止土压力约小25%,满足施工安全要求。随着地下水位的降低,改变沉箱的结构形式和力学模式,可节约较多的材料。  相似文献   

13.
在土钉支护结构的设计计算中,首先要选择合理的侧土压力分布模式,然后再进行土钉、混凝土面层的设计计算以及土钉支护内部整体稳定性分析。侧土压力分布模式是否合理直接影响土钉支护结构的设计计算和工程造价。在分析现有土钉支护侧土压力分布模式及国内外实测结果的基础上,提出了一种新的侧土压分布模式,即“五边形”分布模型。工程实例分析表明,提出的侧土压力分布模式与实测结论相符合,与现有侧土压力分布模式相比更为合理。  相似文献   

14.
将整体式桥台引入斜交桥中形成整体式斜交桥,可有效改善地震中桥梁上部结构纵横向耦连效应造成的面内扭转及落梁现象;但整体式桥台中主梁与桥台浇筑为一体,在地震作用下将发生复杂的桥台-桩-土相互作用。为此,以某整体式斜交桥为原型,开展了斜交桥台-H形钢桩-土体系往复加载拟静力试验研究,探究了体系的抗震性能、台后土压力分布规律以及桥台和钢桩的水平变形特征等。结果表明:斜交桥台-H形钢桩-土体系具有较高的耗能能力及延性,台后土对体系的抗震性能影响显著。台后土提高了体系抗侧承载力及刚度,但亦造成正负向受力不对称性,其中正向抗侧承载力及刚度明显高于负向,但残余承载力及位移明显小于负向。在小位移(<0.01HH为桥台高度)下,斜交桥台的台后土压力沿埋深方向近似呈三角形分布,最大土压力位于台底;沿水平方向呈抛物线形分布,最大土压力位于距桥台锐角0.25 m处;沿纵桥向呈三角形分布,最大土压力位于台背。在大位移(≥0.01H)下,台后土靠台背处出现明显扇形塌陷区域,导致桥台顶部土压力降低,沿埋深方向开始呈双折线分布,沿水平方向呈三折线分布,最大土压力位置不变;沿纵桥向呈双折线分布,最大土压力与台背距离随加载位移逐渐增加。试验结束时,桥台顶部塌陷区域深度近500 mm,宽度近600 mm。加载过程中桥台基本为刚体,出现平动及转动位移;由于部分台后土流动至钢桩前侧,钢桩顶部产生朝向台后土方向的局部累积变形,桩身水平变形在埋深0.25 m处出现拐点及最大值,而非桩顶,试验结束后无明显残余变形。  相似文献   

15.
整体桥具有使用寿命长、施工方便、造价及养护费用低等特点,目前在国内外得到了广泛的应用与推广。以某整体桥为工程背景,设计制作了桥台-桩基结构试验模型,开展了整体式桥台-H形钢桩-土相互作用低周往复荷载拟静力试验,主要研究了桥台和桩基的应变、弯矩与剪力等。试验结果表明:桥台正向移动时桩身应变呈现“酒杯”形分布,负向移动时呈现“橄榄”形分布;同时,无论是最大压应力还最大拉应力,均是正向位移荷载作用下的要明显大于负向作用下的。因此,升温时桩基的内力要大于降温时的,也即夏季高温时的H形钢桩基受力最为不利。为减小升温对桩基的不利影响,建议整体桥合龙温度取略高于年平均温度。同时,在试验研究的基础上,进行了整体式桥台和桩基的内力计算。计算结果表明:采用现有的经典台后土压力理论或桥梁规范计算得到的台底弯矩和剪力与试验结果均存在较大偏差,而采用黄-林法可较准确地得到台底弯矩和剪力。另外,计算结果还表明:负向加载时,采用现有计算方法得到的桩身弯矩和剪力与试验结果偏差不大,分布规律也与传统桩基的相似;但是,正向加载时,采用现有的计算方法得到的桩身弯矩和剪力与试验结果存在较大偏差,分布规律也明显不同。所提出的多项式拟合法和黄-林法能够较为准确地计算得到整体式桥台-桩基-土相互作用时的弯矩和剪力,实际工程中可采用该方法来计算整体桥的桥台和桩基内力,该方法可为中国整体桥的设计与应用提供参考和借鉴。  相似文献   

16.
韩建文 《路基工程》2020,(5):154-158
结合唐山地区铁路站场工程,采用真空强排工法进行松软土地基处理,取消预压土,施工噪音低,无污染,社会经济效益明显。沉降主要发生在预压和堆载1~3个月内,可明显节省工期,其沉降值略大于常规的堆载预压法,后期沉降相对很小,沉降主要发生在路堤本体加固范围之内,对周边影响很小。  相似文献   

17.
以通用有限元程序AN SY S为基础,通过建模、加载计算及后处理方面的分析计算过程,探讨分析地表堆载下桩体结构承载力,为桩基础设计、施工、运营、管理及维修诸环节提供理论基础及依据。  相似文献   

18.
高填涵洞垂直土压力分布规律的数值模拟分析   总被引:2,自引:0,他引:2  
结合前人所做的工作,采用数值模拟方法研究了涵洞顶垂直土压力分布规律,发现若在涵顶一定范围的填土中形成土拱效应,即能实现涵项垂直土压力的减载。不论涵顶填土是否形成土拱效应,其垂直土压力都不是均匀分布的,可供设计、施工参考。  相似文献   

19.
当在软土地基中桥梁桩基附近进行堆载施工时,邻近堆载不仅将引发桥梁桩基发生侧向偏位,还将导致桩身结构产生附加内力,这对于桥梁结构的安全服役性能造成极其不利的影响。本文依托某援外公路桥梁后续河道整治工程,利用有限元软件建立辅道路基-桥梁桩基相互作用模型,对邻近桥梁桩基3处典型断面不同填土堆载范围及施工工艺所引发桥梁桩基偏位情况进行了计算分析。通过数值计算结果,并结合现场实测结果,确定了合理的施工参数,即在辅道涵洞出口附近堆载填土宽度可取为31m,往西侧可过渡到填土宽度23m范围,堆载方向可从辅道东北边缘开始堆填,堆载大小为45k Pa,4~5m为一个施工步。研究成果对堆载作用下桥梁桩基的设计和施工具有重要的理论和工程实际意义。  相似文献   

20.
本文针对高等级公路中目前部分存在的桥台后路基施工压实滞后,桥台桩水平推移 以及桥头跳车等问题,从理论和实践和结合上提出了边孔采用“∏”型无铰刚构组合桥台新结构,经研究分析并从试验桥证明,该结构体刚度大,对抵抗高路堤桥台后的土压推力以及在不良地质修建杠式桥台均具有良好的应用效果。以供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号