首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
某特大跨径PC箱梁斜拉桥多根斜拉索断裂导致箱梁受强扭损伤。制作1∶4模型对箱梁进行抗扭性能试验并对其加固后的性能进行研究,以评估主梁是否具备加固条件。基于相似理论对模型梁加载扭矩进行设计,利用Abaqus有限元软件模拟其损伤状态。对0.9倍、1.1倍和1.2倍扭矩作用下的模型梁进行试验,分析不同扭矩作用下的损伤状态;对受损梁加固前后刚度进行对比,最后对加固梁有无体外预应力进行试验,对其加固效果进行评价。结果表明:0.9倍扭矩作用下位移与理论值相吻合,模型梁实际抗扭承载力与理论抗扭承载力接近;锚贴钢板加固能有效地提高损伤梁的抗扭刚度,体外预应力对模型梁扭转刚度也有大幅提高。  相似文献   

2.
为研究某特大跨双索面混凝土斜拉桥因火灾致强受扭损伤的混凝土箱梁能否修复使用,对强受扭损伤加固后主梁的压弯刚度、扭转刚度及抗弯极限承载力开展了模型试验研究,评估灌浆-锚钢加固对主梁的压弯刚度及扭转刚度的影响。依据常用规范公式对箱梁抗弯极限承载力及正常使用极限状态下的变形、裂缝特征进行验算,评估规范中相应计算公式的适用性,并对加固箱梁在压弯荷载作用下的破坏形态进行对比分析。结果表明:灌浆-锚钢加固能有效地提高弯扭剪复合受力下箱梁的压弯刚度及扭转刚度;在压弯荷载作用下,加固梁的最终破坏形态为箱梁底板拉裂至钢筋屈服破坏,顶板混凝土没有被压溃,腹板锚贴钢板基本无损坏,但顶板锚贴钢板与混凝土界面发生了剥离现象,钢绞线未被拉断;GB50010—2010、JTG D62—2012、ACI318M-05规范均能较为准确地计算箱梁的抗弯极限承载力,ACI318M-05规范计算试验梁在正常使用极限状态下的跨中挠度值与实测值较为接近,基本能反映预应力混凝土箱梁正常使用极限状态下的变形性能;GB50010—2010规范计算试验梁的最大裂缝宽度和裂缝间距与实测值均较为接近,基本能反映预应力混凝土大比例缩尺箱梁的裂缝特性。  相似文献   

3.
基于超高性能混凝土(UHPC)的优异性能及其在混凝土结构抗弯加固中的应用成果,提出了采用配筋UHPC加固受损混凝土斜拉桥主梁的方法,由此开展了UHPC加固受损严重主梁的混凝土斜拉桥节段模型试验研究,以探究主梁加固后斜拉桥体系的受力性能。试验结果表明:UHPC加固混凝土斜拉桥主梁施工方式整体协同工作性能良好,UHPC层与原混凝土间未发生脱黏破坏;UHPC加固后,主梁开裂荷载较原未损伤主梁提升了79.9%,且UHPC层裂缝呈现数量多、间隙小及宽度细的特征,并可有效抑制原主梁裂缝发展,说明受拉UHPC层显著提高了加固后主梁的抗裂性能;不同主梁裂缝宽度工况荷载作用下,斜拉桥体系变形恢复较好,残余变形很小,且当主梁出现严重损伤时,该体系仍具有很好的受力性能;UHPC加固后,主梁的抗弯强度有一定程度提高,但不控制斜拉桥体系的极限承载力,主梁破坏时斜拉索应力为其极限强度的70.2%,斜拉索仍然具有一定承载力富余;UHPC加固后,主梁严重受损的斜拉桥体系刚度得到有效提升,主梁开裂前体系刚度较未损伤原主梁及灌浆加固后主梁分别提升了11.3%和29.5%;采用UHPC对混凝土斜拉桥主梁进行抗弯加固具有较大...  相似文献   

4.
为了研究拉索断裂对双钢拱塔斜拉桥力学性能的影响,采用有限元软件MIDAS/Civil建立了西安市某大桥的三维仿真模型,首先将该模型的各参数与设计值及规范进行对比以验证模型的合理性,然后分析了不同位置、不同数量的拉索断裂后,主梁线形、拉索索力、主梁及索塔应力的变化规律。结果表明:正常运营条件下,斜拉索断裂对主梁线形的影响大于水平索,中间索断裂对跨主梁线形的影响大于外侧索和内侧索,拉索对两系梁之间主梁段线形的影响基本可以忽略;任意拉索的断裂会引起其附近拉索索力增加,外侧斜拉索断裂会导致与其相邻水平索的索力以及另一跨斜拉索索力明显降低,但内侧斜拉索的断裂对与其相邻的水平索和另一跨斜拉索索力的降低不太明显,水平索断裂会引起与其相邻的两根斜拉索索力下降,且下降量值基本相同;双索断裂后主梁挠度和索力变化均近似符合叠加原理,双索断裂后,主梁位移最大增加50.2%,但仍满足1/500挠跨比的要求,纵向对称断索较横向对称断索和原点对称断索危险;少量拉索断裂不会引起结构达到极限承载能力,当两根危险索同时断裂,断索后剩余拉索索力最大为836 MPa,安全系数仍然达到2.2;断索对剩余拉索承载力的影响要高于对主梁和索塔的影响。  相似文献   

5.
目前对于多梁式矮箱梁桥的荷载横向分布计算采用刚接梁法,或采用有限元软件建立模型计算,但以上2种方法都未将抗扭刚度的影响考虑在内。因此,以上采用的2种计算分析方法不能对结构的特性进行准确模拟计算,也不能十分准确地对桥梁技术状况以及承载能力进行评价。为此,基于传统刚接梁计算荷载横向分布方法,在建立柔度系数矩阵时加入考虑主梁和翼板的约束扭转作用,提出一种适用于多梁式矮箱梁桥的荷载横向分布计算方法。为验证该方法的正确性,以某20 m跨径预制PC箱梁桥为对象,采用考虑抗扭刚度、未考虑抗扭刚度的刚接梁法和有限元数值模拟方法(梁格模型和板单元模型)计算其荷载横向分布系数,并与场地试验(中载和偏载2种工况)实测结果进行验证对比。结果表明:所提出的横向分布计算方法比未考虑箱梁主梁和翼板扭转的刚接梁法计算精度更高,也更接近实桥受力特点;同时,梁格模型、板单元模型与所提出的横向分布计算方法所得计算结果整体趋势基本上一致,相比于有限元数值模拟计算结果,采用该横向分布计算方法所得应变和挠度横向分布与实测结果更为接近,且偏差都在20%以内;该方法可在现场场地试验和桥梁承载能力评定中替代复杂的有限元数值计算方法,为预制矮箱梁桥场地试验和桥梁技术状况及其承载能力的评定提供较为准确的理论参考依据。  相似文献   

6.
采用空间有限元模型分析荆岳铁路洞庭湖大桥主桥在成桥运营状态和施工全过程中的动力特性,评估主桥抗风安全性能。分析表明,中塔外边的长索对约束中塔纵桥向位移有一定的作用,过渡墩、辅助墩对主梁的横向和竖向振动的制约作用比较明显。主梁为钢桁梁,扭转刚度大,各工况的主梁弯扭耦合颤振和分离流扭转颤振的临界风速均超过了各自的主梁颤振检验风速,满足抗风安全性要求。  相似文献   

7.
为获得扭矩作用下基桩内力及扭转变形,假定桩为弹性梁,采用非线性土弹簧模拟桩土间的相互作用,建立了单桩受扭的简化计算模型。通过将桩身离散成若干单元,计算得到桩土体系的总能量计算式,考虑桩身力平衡和扭转位移连续条件,基于最小势能原理,建立了用于受扭单桩变形计算的非线性规划模型,并采用最优化计算方法求解该计算模型,获得了单桩的扭转变形。通过在双层地基模型中的受扭计算分析,验证了该方法在层状地基中的适用性。结果表明:桩的抗扭刚度约与桩周土剪切模量的0.5次方成正比例关系;其次,顶层土的剪切模量对桩身的抗扭性能影响较大,通过提高这部分地基土的剪切模量来提升桩的抗扭能力,是实际工程可以采取的经济且有效的手段。基于一模型试验,用MATLAB编制了计算程序,完成了影响因素分析。结果表明:在相同的扭转荷载下,增大桩身剪切模量G_P和桩径d,桩头的扭转角减小,但提高G_P并不能有效提高桩土体系在扭矩作用下的极限承载力;而桩径d越大,桩土体系所能承受的极限扭矩越大,且极限扭矩值的变化率约与桩径的变化率的平方成比例关系;此外,受扭桩的极限承载力的大小与桩侧土极限剪应力B成正比例关系。  相似文献   

8.
配筋超高性能混凝土(Ultra-high Performance Concrete, UHPC)梁在弯剪扭组合荷载作用(复合受扭)下的抗扭性能研究较为匮乏。为此,开展了8根配筋UHPC矩形梁的复合受扭试验,获得了各试件损伤破坏模式、扭矩-扭率曲线、扭矩-应变曲线及扭矩-裂缝宽度曲线,分析了配筋UHPC矩形梁复合受扭破坏机理,探讨了扭剪比、纵向配筋率对抗扭承载性能和延性的影响。试验结果表明:试件破坏形态为纯扭破坏和非纯扭(扭转、剪扭、弯扭)破坏;相比于纯扭试件,非纯扭试件表面未形成空间螺旋形裂缝,同时其正立面裂缝比背立面数量更多且更宽,非纯扭试件开裂扭矩降低46%~73%,抗扭承载力降低1%~38%,扭转延性系数提高38%~169%。随扭剪比从1增加到3,非纯扭试件抗扭承载力提高1%~21%,扭转延性系数提高24%~88%;随着纵向配筋率从0.78%增加到4.90%,试件抗扭承载力提高12%~27%,非纯扭试件扭转延性系数提高35%~88%,但纯扭试件扭转延性系数下降了31%。配筋UHPC复合受扭梁弯扭相关性符合“三折线”模型,基于弯扭“三折线”模型提出的复合受扭梁抗扭承载力公式计算值与...  相似文献   

9.
为研究超大跨混合梁斜拉桥在汽车荷载作用下的塑性区发展过程和极限状态下的破坏机理,以贵州鸭池河特大桥(主跨800m双塔双索面混合梁斜拉桥,边跨主梁采用预应力混凝土箱梁,主跨主梁采用钢桁梁)为背景,采用ANSYS软件建立全桥有限元模型,逐级施加汽车荷载,分析不考虑断索和考虑断索2种情况下该桥的破坏过程和承载能力。结果表明:随着荷载的增加,钢桁梁先产生受压塑性区和受拉塑性区,随后斜拉索到达屈服应力;不考虑断索情况下,斜拉索逐步屈服后钢桁梁受压塑性区和受拉塑性区不断扩大,结构最终失效,破坏表现出略好的延性;考虑断索情况下,第1根斜拉索屈服后断裂引起周围斜拉索的连续瞬时断裂导致结构破坏,破坏呈现明显的脆性;不考虑断索和考虑断索情况下,极限状态时的荷载系数λ分别为11.69和11.12。  相似文献   

10.
为解决钢桥面沥青铺装疲劳设计应变没有解析公式的问题,进行了整桥平面弯曲应变简化计算模型、钢箱梁扭转横向弯拉应变计算简化模型、局部钢桥面沥青铺装叠层梁应变简化模型等3个结构体系的分析,采用弹性支承多跨连续梁模型与弹性地基梁模型,结合拉索当量支撑刚度、主梁抗弯刚度、钢箱梁截面抗扭刚度、桥面板加劲肋当量支撑刚度等作为计算参数...  相似文献   

11.
为研究大挑臂钢箱结合梁截面的抗扭刚度,以黑瞎子岛乌苏大桥——(140+140)m的钢箱组合梁独塔单索面斜拉桥为对象,通过1∶4的缩尺节段模型试验和有限元计算,对单车道、双车道和3车道偏载工况下结构的扭转性能进行分析。结果表明:3车道偏载作用下,主梁的实测最大扭转角和最大剪应力为9.88×10-4 rad和14.71MPa,远小于桥面横坡2%和规范允许的125MPa,乌苏大桥钢箱组合梁截面具有足够的抗扭刚度,且富余量大;增加钢箱梁底板和腹板厚度可显著提高钢箱组合截面的抗扭刚度,而增加钢箱梁顶板厚度对截面抗扭刚度的提高有限。  相似文献   

12.
《公路》2020,(5)
为研究不同结构参数对PC连续T梁桥动力特性的影响,以某工程PC连续T梁桥为研究对象,现场实测该桥的振动基频,应用ANSYS软件建立实桥有限元模型,并分析该桥的动力特性。分别研究了不同建模方法、护栏、横隔梁布置和支座横向约束对PC连续T梁桥动力特性的影响。研究结果表明:护栏可以提高PC连续T梁桥的抗扭刚度和抗弯刚度,且对抗扭刚度的影响大于对横向抗弯刚度的影响,用质量单元建立护栏模型,反而使桥梁抗扭刚度下降;端横梁可以提高横向抗弯刚度;随着中横隔梁数量的增加,PC连续T梁桥的基频增大,抗扭刚度增强;增加支座横向约束可以有效提高PC连续T梁桥的抗扭刚度和横向抗弯刚度,并且中间支座横向约束效果比端部支座横向约束效果更好。  相似文献   

13.
以一座结合梁斜拉桥--开普吉拉多大桥为研究对象,对两种模拟斜拉桥动力特性的有限元方法进行了比较.模型一假设主梁为矩形截面,在主梁高度处施加集中质量;而模型二则包括了另外用来模拟主梁的扭转特性的集中质量.为检查忽略截面形状的影响,对两种模型的模态特点进行了比较.模型二表现出了突出的扭转响应,是因为在模型中正确考虑了重心和扭心的位置.  相似文献   

14.
无背索斜拉桥经过多年运营后,由于多种因素的影响,可能没有处于一个合理的内力状态,存在一定的安全隐患。该文以金州大桥无背索斜拉桥为工程背景,针对既有结构分析其合理内力状态。首先介绍了从调索前的初始状态转化到最终合理目标状态的索力调整思路;然后将金州大桥主桥调索前主梁线形、主塔偏位和索力的实测数据与设计值进行对比,发现该桥的主梁和主塔线形状态及索力状态均不满足要求,并基于实测的线形和索力数据对有限元模型进行修正,使模型状态逐步逼近于实际情况,进而得到调索前主梁和主塔内力状态的理论值;最后对该桥进行可行域分析,得到了恒载状态下应力的可行域,从而确定了该无背索斜拉桥的合理内力状态及其对应的斜拉索索力。  相似文献   

15.
《公路》2019,(11)
清远北江四桥是钢-UHPC轻型组合桥面板首次应用于单索面大悬臂的斜拉桥,该桥UHPC层采用蒸汽养生会对该桥主梁产生梯度温度,从而产生横向变形和纵向变形,且单侧不对称的蒸养方式使抗扭刚度小的单索面斜拉桥产生了平面弯曲变形,从而对支座位移产生影响,通过有限元和实桥变形数据分析UHPC层蒸养过程对桥梁横向、纵向以及平面内弯曲变形的影响。  相似文献   

16.
通过建立仙桃汉江公路大桥有限元模型,模拟均匀升温及局部温差荷载,研究温度场对混凝土斜拉桥应力、位移和索力的影响。通过在实桥典型断面埋设测温元件,实测主塔和主梁位移随温度变化的规律,并根据实测数据拟合出适合于本桥主梁温度梯度计算的公式,以修正有限元模型中的参数,有效减小温度效应对施工精度的影响。  相似文献   

17.
为提高斜塔有背索斜拉桥的施工控制精度,以阿勒泰市红墩路跨河桥为工程背景,采用有限元计算程序MIDAS Civil建立三维空间有限元模型,利用仿真分析方法对各设计参数的敏感性进行研究,分析了温度变化、结构自重、施工索力、主梁刚度等参数在成桥阶段对桥梁内力、线形及索力的影响规律.计算结果表明:温度变化对成桥索力影响较大;温度变化、施工索力误差对主梁线形、内力以及桥塔位移影响较大;结构自重对成桥状态有一定影响.通过修正主要设计参数,忽略次要设计参数,对红墩路跨河桥进行施工监控,所得成桥线形状况良好,误差在允许范围内.  相似文献   

18.
斜拉索是斜拉桥的主要受力构件之一,其索力的大小直接影响桥梁结构的内力和变形状态。频率法是运营期间的桥梁索力测试的常用方法。本文以某斜拉桥为例,通过MIDAS CIVIL建立全桥有限元模型,确定合理成桥状态,结合ANSYS斜拉索减震装置仿真分析,采用频率法对其斜拉索索力进行测试,综合考虑频率法精度的各影响因素,对索力进行安全判定。结果表明:利用未知荷载系数功能优化后的索力可靠性较高;随着减震器等效刚度的不断增大,计算索长选取方式对索力误差存在影响;考虑减震器为刚性支撑,其计算的索力更能接近真实索力;该桥实测索力整体与原成桥索力差别不大,斜拉索索力整体处于安全可控的范围内。  相似文献   

19.
针对宽主梁中间索面斜拉桥受力特点,以某拟建桥梁项目为背景,建立了全桥板壳有限元模型。对主梁剪力滞、扭转效应、横向支座反力分配等空间效应进行了计算。结果表明:主梁剪力滞效应明显;扭转刚度主要由外框板件提供,且可按自由扭转公式估算;边支座在对称荷载作用下反力较小,仅在偏载作用下提供抗扭支撑。根据上述分析结果,对该类型桥梁提出了若干设计建议。  相似文献   

20.
以某座主跨120m的双斜塔无背索斜拉桥为工程背景,采用有限元软件midas Civil建立单主梁有限元模型,分析虚拟刚臂截面尺寸和材料弹性模量的取值对结构基频的影响程度,并研究前9阶振动频率和振型,最后通过改变材料的弹性模量,分析斜拉索刚度、主梁刚度和主塔刚度的改变对结构振动频率和振型的影响。结果表明,刚臂截面的宽度对结构基频影响最大;斜拉索的刚度对结构的整体刚度影响很小,其中塔的纵弯对斜拉索刚度的改变比较敏感;增大主梁的刚度可以调整主梁和主塔振动形式出现的先后顺序;主塔刚度的增加,使主梁的侧向扭转振型后移。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号