首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
江顺大桥主桥为主跨700m的双塔双索面混合梁斜拉桥,该桥钢箱梁采用悬臂拼装施工,边跨预应力混凝土箱梁采用支架现浇法施工。为保证成桥后的线形及内力满足设计要求,采用MIDAS Civil软件建立全桥杆系有限元模型,并基于无应力状态法对该桥进行施工控制。在施工控制中,采取了桥塔应力及线形控制、塔内斜拉索锚固块预抬量及钢锚梁预抬量控制、主梁的钢箱梁制造线形及施工线形控制、斜拉索的下料长度及施工中斜拉索索力控制等关键控制技术。成桥后对桥塔应力和偏位、主梁测点高程、斜拉索索力的实测值与理论值进行对比分析,结果表明:以上各数据的实测值与理论值均吻合较好,误差均在合理范围内,满足设计要求,成桥状态良好。  相似文献   

2.
为了解结构状态参数对大跨径曲线矮塔斜拉桥成桥状态的影响,获取施工控制敏感参数,以黄龙带矮塔斜拉桥——(108+208+108)m双塔三柱式曲线预应力混凝土矮塔斜拉桥为背景,采用有限元软件TDV RM建立该桥空间杆系有限元模型,分析主梁自重、主梁弹性模量、斜拉索索力、预应力张拉力、混凝土收缩徐变和体系温度参数变化下,主梁的应力和挠度的变化规律。结果表明:主梁自重、斜拉索索力、混凝土收缩徐变和体系温度对成桥状态主梁的应力和挠度影响显著,是施工控制敏感参数;主梁弹性模量和预应力张拉力对成桥状态主梁的应力和挠度影响较小,是施工控制非敏感参数。  相似文献   

3.
地锚式万向铰独斜塔斜拉桥结构体系新颖,为分析温度荷载作用下该类桥梁成桥状态的结构响应,以三亚海棠湾河心岛景观桥(主跨99.8 m钢斜塔双边工字钢梁独塔斜拉桥)为工程背景,建立桥梁结构有限元模型,分析体系温差、日照温差、索梁(塔)温差对桥塔偏位、主梁线形以及索力的影响。结果表明:体系温差下桥塔以纵向弯曲和纵向偏转为主,体系降温将引起全桥主梁下挠,体系升温效应相反,最大背索索力变化为成桥索力的6.1%;日照温差下桥塔以横向弯曲为主,纵向偏位较小,对主梁线形、斜拉索索力影响较小;索梁(塔)负温差下有索区主梁发生向上位移、背索索力增大,正温差下相反,对桥塔偏位基本不影响。  相似文献   

4.
港珠澳大桥九洲航道桥为主跨268m双塔单索面钢-混组合梁斜拉桥,辅助墩负弯矩区主梁采用支点顶升法施工。为研究该桥辅助墩支点顶升及回落施工对结构受力的影响,采用MIDAS Civil软件建立全桥空间有限元模型,分析顶升施工全过程中桥塔、主梁、斜拉索的受力。结果表明:顶升施工中桥塔、主梁变形较大,顶升回落后其变形基本恢复至顶升前状态;顶升施工中塔梁固结段位置处桥塔结构应力变化显著,桥面板后叠合区域的钢梁结构应力变化较为明显;顶升后斜拉索索力出现较大幅度的降低,顶升回落后斜拉索索力基本与顶升前索力相一致;支点顶升法能够有效地改善负弯矩区桥面板的受力情况,对负弯矩区施加预应力的效果明显。  相似文献   

5.
为提高大跨钢箱梁斜拉桥的施工控制精度,以某大跨斜拉桥为研究对象建立有限元模型,分析拉索弹性模量、主梁弹性模量、主梁体积重量、桥塔刚度等主要结构参数变化对结构响应的影响,以成桥线形、拉索索力、主梁应力、索塔应力、桥塔偏位为控制目标进行结构参数敏感性分析。结果表明,拉索弹性模量对成桥主梁线形、拉索索力影响较大,为敏感性参数;主梁线形、拉索索力、桥塔偏位对结构参数的变化较敏感;中跨主梁线形比边跨主梁线形对参数变化更敏感;主梁应力对拉索弹性模量减小较敏感;桥塔应力对主梁体积重量减少较敏感。  相似文献   

6.
《世界桥梁》2021,49(3)
杨泗港快速通道青菱段跨铁路斜拉桥为半飘浮体系双塔钢箱梁斜拉桥,桥面宽44 m,跨越既有铁路采用转体法施工,转体长248 m,转体重达18 500 t。转体前进行不平衡称配重,确定平衡状态参数,确保主桥转体过程中的稳定性。施工过程中,控制钢箱梁拼装线形精度,使其转体后满足成桥目标状态;结合有限元分析,对主梁和桥塔最不利控制截面的内力及斜拉索索力进行控制,及时修正实际施工状态,保证成桥线形、结构内力和斜拉索索力满足设计要求。结果表明:成桥后主梁高程与设计值吻合良好;主梁应力为-22.6~-6.2 MPa;桥塔应力为-6.6~-3.9 MPa;斜拉索索力偏差小于10%;成桥线形和结构内力均满足设计要求。  相似文献   

7.
新建常益长铁路沅江特大桥跨石长铁路桥为(32.7+90+90+32.7) m空间双索面钢拱塔钢-混结合梁斜拉桥,以18°小角度跨越既有高铁运营线路。该桥采用先拱后梁方案施工,其中,桥塔采用先竖转再跨线平转法施工,钢主梁采用拖拉法跨线施工。为确保成桥线形和应力满足设计要求,采用MIDAS Civil软件建立有限元模型,对拱塔竖转与跨线平转、钢主梁跨线拖拉、斜拉索张拉及混凝土桥面板浇筑进行施工模拟,提出拱塔顶推力及无应力线形、钢主梁临时扣塔结构与扣索力、混凝土桥面板分段施工、斜拉索三次张拉等控制技术,并将施工中拱塔与主梁的实测应力、线形与理论值进行对比分析。结果表明:拱塔转体施工过程中,拱塔线形与应力实测值与理论值吻合良好;钢主梁拖拉合龙精度控制良好;混凝土桥面板浇筑、斜拉索张拉后,主梁和拱塔的应力、线形实测值与理论值误差均在合理范围内,桥面标高满足无砟轨道铺设精度要求;铺轨后,拱塔和主梁的线形与应力、斜拉索索力等各项指标均良好,大桥整体施工控制精度良好。  相似文献   

8.
池州长江公路大桥为主跨828m的双塔双索面混合梁斜拉桥,采用将斜拉索分组集聚式锚固于塔间钢横梁上的新型锚固形式。钢箱施工梁采用悬臂拼装法,边跨预应力混凝土箱梁施工采用支架现浇法。针对大桥集聚式锚固和主梁不对称施工两个特点,应用几何控制法进行施工控制,采取了塔柱偏位和预抬量控制、塔柱应力控制、钢横梁预抬量控制、主梁制造线形及安装线形控制、斜拉索下料长度控制等诸多关键控制技术。成桥后对索塔偏位及应力、主梁线形、斜拉索索力进行了实测,并与理论值进行对比分析,结果表明:结构线形、应力、索力的实测值与理论值较吻合,均满足规范要求;大桥总体控制效果良好。  相似文献   

9.
贵黔高速鸭池河特大桥为主跨800m的钢桁-混凝土混合梁斜拉桥,边跨预应力混凝土梁采用挂篮悬臂浇筑施工,主跨钢桁梁采用缆索吊机整节段悬臂拼装。为指导施工,使成桥后的结构线形和内力满足设计要求,采用TDV RM软件建立全桥有限元模型,在施工过程中对桥塔、预应力混凝土梁、钢桁梁的线形和应力及斜拉索索力等进行监控。结果表明:施工过程中结构线形和应力的实测值与理论值均吻合较好,成桥后主梁线形平顺、索力均匀;桥塔线形误差控制在±4cm以内,边跨混凝土梁和中跨钢桁梁标高误差分别控制在±1.1cm、±5cm以内,斜拉索索力误差在±10%以内,均满足设计要求。  相似文献   

10.
宁波外滩大桥是一座独塔四索面异形斜拉桥,为确保桥梁结构在施工过程中和成桥状态下的安全和稳定性,保证桥梁结构成桥状态的线形和内力值符合要求,对施工过程进行模拟计算和分析,结合该桥特点分析了该桥施工控制过程的重点和难点,确定了主塔和主梁的应力、主塔偏位和主梁的线形、斜拉索索力等作为主要控制内容,以及相应的测量方法。在主塔施工、中跨主梁梁段施工、合龙段施工和成桥施工4个主要施工阶段分别监测各个主要控制内容,通过监测数据判断施工过程中各主要控制内容是否符合设计要求。另外,在成桥阶段进行了全桥通测,得到成桥状态下的线形和结构内力值与理论计算值的拟合情况,从而确定此研究控制理论和方法在工程实例应用中的可行性。  相似文献   

11.
为了解高低塔斜拉桥施工阶段温度作用对结构的影响,以清溪口渠江特大桥主桥为背景进行研究。采用MIDAS Civil软件建立全桥有限元模型,分析最大单悬臂施工阶段昼夜温差、主梁温度梯度、桥塔温度梯度、斜拉索与桥塔和主梁温差对斜拉索索力和主梁挠度的影响。结果表明:昼夜温差引起的主梁挠度和斜拉索索力变化很小;主梁温度梯度作用下,边跨主梁挠度和斜拉索索力变化较小,中跨主梁挠度在悬臂端处最大,合龙段附近斜拉索索力明显增大;桥塔温度梯度作用下,边跨主梁挠度较小,中跨主梁挠度较大,边跨支座附近斜拉索索力变化明显;斜拉索与桥塔、主梁温差作用下,中跨主梁高塔、低塔侧悬臂端最大挠度分别为137mm、78mm,桥塔附近斜拉索索力变化显著,最大变化值为设计索力的9.8%。  相似文献   

12.
结构参数误差是斜拉桥施工控制过程中误差产生的重要来源.为分析结构各设计参数对桥梁成桥状态影响的敏感性,以江津观音岩长江大桥为背景,采用有限元法计算各设计参数对大跨度结合梁斜拉桥主梁成桥线形和主梁应力的影响.结果显示:主梁重量、拉索制造长度、桥面板重量和温差对该桥主梁成桥线形及主梁应力有显著影响;桥面板弹性模量和主梁弹性...  相似文献   

13.
为了保证葑溪大桥的施工安全和质量,根据预应力混凝土斜拉桥悬臂浇筑和支架现浇非对称施工特点,建立施工控制计算模型,探讨影响主梁线形及斜拉索索力的因素,并制定相应控制措施,对主梁线形、内力、索力、牵索挂篮应力和变形进行有效监控.施工控制结果表明:成桥状态下,主桥轴线实测标高、桥梁应力状态、成桥索力均满足设计要求,挂篮在施工过程中的应力状态及变形情况与试验变化趋势基本一致.  相似文献   

14.
不同于一般的矮塔斜拉桥,大蒸港矮塔斜拉桥的主梁为曲梁预应力混凝土宽箱结构,主塔为倾斜的钢混结合结构。该文介绍了其总体设计,并针对该桥的特点,采用自适应控制法,通过对主梁和主塔的线形和内力的监测对该桥进行施工控制。研究了宽主梁在施工过程中各节段截面应力和挠度的横向分布情况,以及各斜拉索索力在整个施工过程中的变化规律情况和主塔在施工过程中应力和变形情况。  相似文献   

15.
岳刚 《公路与汽运》2010,(4):168-171
结合实体工程,分析了斜拉桥主梁梁重施工偏差对桥梁结构力学状态的影响程度,探讨了梁体施工节段重量偏差对成桥后主梁与索塔线形、内力状态及拉索索力的影响。结果表明,主梁梁重偏差对主梁成桥线形、索塔成桥塔偏的影响较大,在结构计算、施工监控时需根据施工情况及时调整结构容重参数,避免因结构计算失真造成施工质量问题。  相似文献   

16.
广西柳州凤凰岭大桥为(96+124+3×130+90) m连续钢-混组合梁桥,主梁为等高双箱单室钢-混组合梁,由槽形钢箱梁和混凝土桥面板构成,梁宽46.6 m,该桥竖曲线由3段圆曲线和2段直线组成。钢梁采用连续步履式顶推、跨间不设临时墩的方案施工,最大顶推跨度达130 m。由于该桥竖曲线线形复杂、顶推悬臂长度较大、桥面板及体外预应力束施工工序繁杂,为确保施工中结构安全、成桥线形和内力满足设计要求,从线形控制、导梁过墩控制、桥面板安装控制等方面进行施工控制。钢梁顶推施工时,采用几何状态传递法对各梁段安装线形进行预测与控制,确保成桥线形满足设计要求;分析临时拉索张拉、环境温度改变与导梁前端位移响应关系,计算临时拉索张拉力,通过张拉临时拉索实现导梁顺利过墩;桥面板施工时,对皮尔格铺装法进行优化,改变桥面板安装顺序,确保了钢梁及桥面板应力满足要求,并缩短了工期。通过以上施工控制,该桥钢梁顺利顶推完成,全桥线形平顺,实测主梁线形满足设计要求,成桥状态良好。  相似文献   

17.
为保证平行钢绞线斜拉索的张拉精度及锚固性能,并提高张拉效率,以跨径为(242+580+242)m双塔双索面叠合梁斜拉桥——六广河特大桥为例,对斜拉索张拉方案进行优化。原方案以消除结构自重为主,兼顾结构受力,但需反复微调,耗时长且不利于锚固安全;优化方案提高了第二次张拉的索力值,减小当前节段湿接缝压应力储备,以控制下一节段钢主梁拼装时当前节段桥面板及湿接缝应力不超限为目标,并将第三次张拉调整时的单根张拉法改为大吨位千斤顶整体张拉。有限元计算及实施效果显示:采用优化后的张拉方案,施工过程及成桥后主梁应力及线形、斜拉索索力及桥塔偏位均满足规范要求,相对于原方案工期提前40d。  相似文献   

18.
柳州白沙大桥主桥为主跨2×200m的单塔双索面斜拉桥,刚构体系。主梁采用正交异性钢桥面板流线型扁平钢箱梁,梁高4m、宽38m。桥塔采用钢结构空间Q形塔,塔高108m,为反对称结构。桥塔塔底通过剪力钉和PBL剪力键与混凝土塔座及承台锚固。全桥共布置60根斜拉索,按空间双索面布置,梁上索距12m、塔上索距3m。斜拉索锚固,塔端采用钢锚箱方式,梁端采用锚拉板方式。边墩采用花瓶形框架式桥墩,桥塔墩与边墩均采用分离式矩形承台、钻孔灌注桩基础。为控制成桥线形,并保证施工期间的通航,该桥主梁采用顶推法架设。采用空间有限元程序MIDAS Civil对该桥进行结构静力计算,计算结果显现出成桥阶段主梁横弯、运营阶段主梁刚度偏小的反对称结构受力特性。  相似文献   

19.
跨京广铁路信阳编组场大桥为(150+150) m独塔曲线钢箱梁斜拉桥,塔高86 m,向曲线外倾斜3°。该桥采用不平衡水平转体法施工,转体重量达19 600 t,转体角度74°。针对斜塔施工过程中结构重心外移引起的倾覆稳定问题,以及斜塔曲梁斜拉索初张拉钢梁脱架难的问题,采用MIDAS Civil软件建立桥梁施工过程有限元模型,进行施工控制研究。施工过程中,采用砂筒+配重措施,以提高结构抗倾覆系数至1.303,保证桥塔施工过程的稳定性;提前拆除塔根处钢梁支架,减小斜拉索初张力,保证了钢梁安全顺利脱架,同时避免了钢梁扭转;运用桥梁转体智能监测控制技术实时监测转体过程,转速控制为0.65 (°)/min,转体过程平顺稳定,成桥后监测的主梁线形与斜拉索索力均满足规范要求。  相似文献   

20.
宁波外滩大桥主桥为独塔四索面异型斜拉桥结构,为保证全桥结构在施工过程中和成桥状态下的安全和稳定性,确保成桥状态的线形和结构内力符合设计要求,进行了施工模拟计算和分析。在各个主要施工阶段分别监测主塔应力和线形、主梁应力和线形、斜拉索索力,通过监测数据判断施工过程中各项控制内容是否符合要求,从而确定此研究控制理论和方法在工程实例中的可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号