首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
静力弹塑性分析方法在桥梁结构中的应用探讨   总被引:3,自引:1,他引:2  
静力弹塑性分析方法由于其简明实用的特点,已经成为近年来评估地震作用下建筑结构非线性反应的普遍方法。它的优点是比非线性动力时程分析方法计算量小,便于工程应用。该文将静力弹塑性分析方法的应用范围扩展到桥梁结构,使用均匀分布和振型荷载叠加,两种水平荷载分布方式,计算了一座实际桥梁结构的非线性反应,并与时程分析的结果进行比较。结果表明对一阶振型在反应中起主要作用的一般的桥梁结构,该方法能得到较好的结果。  相似文献   

2.
非线性静力(Pushover)分析方法与非线性时程分析(NL-THA)方法相比能节约大量的计算成本,且越来越广泛地用于房屋结构的抗震分析。然而,假设结构的反应由其基本模态控制使该方法存在很大的局限性,主要适用于较为规则的短周期结构。笔者将模态Pushover方法(MPA)与能力谱方法结合,使其能考虑高阶模态反应,并应用于实际的高墩桥梁结构地震需求分析。通过与传统Pushover分析方法(SPA)和NL-THA的分析结果进行对比,验证MPA方法对于高墩桥梁地震需求分析的适用性。  相似文献   

3.
张小璇 《城市道桥与防洪》2020,(5):276-279,M0027
以桥梁系数作为参照标准,分别采用真实地震波反应谱和设计反应谱作为地震需求,对比分析了4种非线性静力方法(承载力反应谱法、N2法、改进的模态Pushover分析法和自适应承载力反应谱法)对钢筋混凝土连续桥梁结构的计算准确性。研究表明:随着地震强度的增大,4种非线性静力分析方法得到的计算结果逐渐接近于非线性动力分析的计算结果;对于采用真实地震波的情况,N2法给出了最接近动力分析的结果,而对于采用设计反应谱的情况,4种非线性静力分析方法得到的结果之间差别非常小。  相似文献   

4.
桥梁结构的动力分析方法是一个热点研究方向,基于模态试验,选取高新一号桥为工程背景,并对该桥结构动力响应进行研究。通过实测得知,振型、频率、阻尼的测试结果与设计取值差异性较大,所以能够推断按设计模型计算的结构动力响应计算结果与实际响应也会有较大差距。根据模态叠加法的理论,提出采用实测模态的数据进行动力分析,可以更为准确地评价桥梁结构的动力响应。  相似文献   

5.
通常桥梁结构地震响应的贡献主要来自于低阶振型,高阶振型的贡献非常有限。工程应用中,需对地震响应的贡献进行量化,以确定需要计算的振型阶数。文中阐述了振型参与质量系数在衡量振型对结构地震响应贡献中的重要作用,明确其在桥梁结构地震响应计算过程中的机理。并对示例进行有限元分析,论证了该理论在工程运用中的正确性。  相似文献   

6.
在桥梁结构评估中已存在一些不同的监测技术,这些技术主要是基于结构的静力或动力行为的变化.由于动力特性参数基本上不因荷载的变化而变化,因此,使用动力特性进行结构评估较使用静力特性具有许多优越性.在使用动力特性时,试验证明仅使用结构的固有频率和模态振型是不够的,而利用固有频率和模态振型的导出量更会产生结构识别的诊断参数,模态柔度法即是其中的一种.对模态柔度法进行了修正,使之能适用于环境振动的条件.一座公路钢板梁桥现场试验结果表明,修正的模态柔度法可以清晰反映桥梁结构行为的变化.  相似文献   

7.
大跨度桥梁发生静风失稳的临界风速可能低于动力失稳的临界风速.结合斜拉桥的结构特点,探讨了已有的非线性失稳分析方法,提出了一种静风失稳的复合标准判断方法,基于MSC.MARC和Python脚本语言,综合考虑结构几何非线性和静风荷载非线性影响,探讨了大跨度斜拉桥空气静力失稳特性.结果表明:升力系数和力矩系数在大跨桥梁静力失...  相似文献   

8.
为了研究桥面板分片子结构模态柔度综合的理论和实现方法,对2种进行动力计算分析模态柔度的方法以及其一致性进行了介绍.利用这2种方法获取不同子结构的质量归一的振型,并对子结构振型进行拼接得到整体结构的振型,进一步得到整体结构模态柔度(称为分片子结构模态柔度综合技术).通过简支混凝土板的数值试验和实际钢-混凝土组合梁桥的真实试验,验证了利用分片子结构模态柔度综合技术测试识别桥面板模态柔度的可行性.在进行分片子结构模态测试的基础上,将单点输入多点输出(SIMO)子结构综合的模态参数与多点输入多点输出(MIMO)得到的整体结构模态参数进行比较.结果表明:单点输入单点输出(SISO)、SIMO和MIMO方法均能准确获取桥梁结构激励点的模态柔度系数,并能通过子结构振型拼接的方法获得与静力方法相差很小的模态柔度矩阵,可作为传统卡车加载测试有效补充的新型桥梁测试方法.  相似文献   

9.
桥梁结构动力试验包含自振特性测试和各种条件的行车试验。实际检测时主要是利用测试冲击系数和自振频率这2项参数对桥梁结构承载能力进行评价,对于阻尼、振型等测试结果没有评判方法,仅列在检测报告中供参考。在实测中发现,频率、振型、阻尼的测试结果与设计计算值差异性较大,因此可以推断按设计值计算的结构动力响应(地震、抗风)计算结果与实际响应也应有较大差距。以基于振型分解法的理论作为基础,提出采用试验模态的实测数据进行动力计算,进而可以较为准确地评价桥梁结构的动力响应。  相似文献   

10.
基于改进ASPA法的高阶振型对桥墩抗震性能的影响评价   总被引:3,自引:0,他引:3  
利用完全解耦的方法对适应谱Pushover分析方法(ASPA法)进行简化,提出了更适用于工程实际的改进适应谱Pushover分析方法(IASPA法)。利用IASPA法对4种典型地震动作用下的桥墩进行计算分析,并将计算结果与传统的Pushover分析方法以及非线性时程分析的结果进行对比研究;进而利用IASPA法和非线性时程分析方法分别对3个不同高度的桥墩进行分析,研究了高阶振型对不同高度桥墩抗震性能的影响。研究结果表明:随着桥墩高度的增加,高阶振型对桥墩抗震性能的影响变大;IASPA法由于考虑了高阶振型的影响,能够对高墩的抗震性能做出有效评估。  相似文献   

11.
通过弯曲梁流变(BBR)试验分析不同掺量橡胶改性沥青以及胶粉复合SBS改性沥青的低温性能。结果显示,随着胶粉掺量的增加,橡胶改性沥青的劲度模量逐渐下降,蠕变速率逐渐增加,沥青逐渐变软,低温变形以及应力消散能力逐渐提升,低温性能逐渐提升;当胶粉掺量达到18%时,其低温PG分级相较于基质沥青可提升一个等级。对于胶粉复合SBS改性沥青,随着SBS的加入,橡胶改性沥青的劲度模量稍有提高,然而蠕变速率也增加,说明加入SBS使得橡胶改性沥青变硬的同时,也提升了其低温变形能力以及应力消散能力;当胶粉掺量从5%增加至18%时,其低温劲度模量降低约50%。  相似文献   

12.
地震作用下LRB隔震桥梁碰撞临界间隙分析   总被引:1,自引:1,他引:0  
采用LRB隔震支座增大了梁体在地震作用下碰撞的可能性,确定隔震梁桥邻跨间避免地震碰撞的最小间隙对于桥梁减隔震措施的设计有着显著意义.以隔震连续梁桥梁端相对位移为研究对象,通过桥梁结构拆分,运用振型分解法推导梁体在地震作用下相对位移的最大值反应谱计算方法.采用等效双线性铅销橡胶支座模型,通过迭代计算梁端相对位移并分析SRSS和CQC振型组合法适用性.采用非线性时程分析法计算连续梁的相对位移,验证了反应谱方法预测梁端地震临界间隙的可行性.结果表明:地震作用下梁端相对位移与相邻结构的周期和阻尼比有关,梁端采用CQC组合的反应谱方法能较好预测梁体在地震作用下梁体避免碰撞的临界间隙.提出了基于反应谱方法隔震桥梁间隙设计方法,可供设计人员参考.  相似文献   

13.
基于虚拟试验的边坡失稳概率分析方法   总被引:7,自引:0,他引:7  
针对边坡稳定性分析中,极限平衡条分法得出的边坡稳定性系数表达式是一个高度非线性方程而导致可靠度计算无法进行的问题,按照复杂结构稳定可靠度求解思路,建立了以条分模式稳定性系数计算作为虚拟试验,以二次多项式为验算点逼近过渡函数,依据基本随机变量分析边坡稳定失效概率的方法。以陈祖煜-摩根斯坦边坡条分模式为例,阐明了在新方法中可靠度指标计算的步骤和精度控制及递归修正的实现过程。采用该方法计算了某公路边坡的失稳概率,并与精确解进行了比较。结果表明:该方法计算结果与精确解的相对误差为4.66%,绝对误差为0.535%,适用于边坡工程的失稳概率分析。  相似文献   

14.
为了研究荷载-渗流耦合作用下不同渗流形态对沥青路面结构各力学场量响应的影响,进一步揭示沥青路面水损害机理,在高水压沥青混合料渗透试验的基础上,采用非线性有限元方法,模拟分析碗形分布动荷载下Forchheimer非线性渗流和达西线性渗流时饱水沥青路面内部各力学场量的变化。渗透试验结果表明:在较高水力梯度下渗流流速-水力梯度关系呈现出非线性特征,不再适用达西定律,而需应用Forchheimer非线性渗流定律描述。数值模拟分析结果表明:2种渗流形态时沥青路面结构内部各力学场量均随着车轮动荷载的作用过程表现出波动性,且孔隙水压力均随着半正弦波型荷载的变化而呈正相关关系;与达西渗流时计算结果相比,非线性渗流时上面层内正孔隙水压力的峰值高49%,沥青面层内水平方向的拉应力、压应力、拉应变的峰值分别高16%、105%、15%,且在路表产生竖向拉应力,孔隙水压力也远高于现场实测值;2种渗流形态时均在上基层底部产生竖向拉应力,在沥青路面内产生的剪应力差别很小。因此,在车轮动荷载作用下,饱水沥青路面内部形成超高孔隙水压力和高流速的非线性渗流,会产生比线性渗流更为严重的水损害,以往基于达西定律的饱水沥青路面动态响应分析低估了车轮动荷载对沥青路面水损害的影响程度。  相似文献   

15.
为研究浅埋隧道围岩压力的计算方法,依托高丽营隧道工程,采用有限元软件建模分析,并基于剪切应变判定准则得到浅埋隧道的失稳破坏形态。然后构建塑性极限分析上限法破坏模式和速度场,建立浅埋隧道围岩压力计算方法,对岩土体非线性破坏准则对浅埋隧道围岩压力的影响规律进行探讨。研究结果表明: 1)无论是基于线性还是非线性破坏准则,侧压力系数的取值对计算结果均有很大影响,侧压力系数的增大,会引起竖向围岩压力的减小和水平围岩压力的增加; 2)围岩压力随非线性系数的增加而逐渐减小。  相似文献   

16.
桥梁板式橡胶支座与粘滞阻尼器组合使用的减震性能研究   总被引:2,自引:0,他引:2  
蒋建军  李建中  范立础 《公路》2004,(11):41-46
在分析几种减隔震装置的减震耗能机理的基础上.提出了粘滞阻尼器与板式橡胶支座组合使用的减震措施,并利用非线性时程地震反应分析方法。对这种组合装置的减震性能进行了研究。为了研究阻尼系数、阻尼指数和周期对减隔震桥梁地震反应的影响。本文做了大量的参数分析。研究结果表明.组合使用板式橡胶支座和粘滞阻尼器,既能显著地减小结构地震力。又能有效地控制梁体位移及墩、梁相对位移。  相似文献   

17.
针对目前沥青路面结构分析中存在的线弹性层状体系假设无法描述材料非线性特性以及结构层模量取值不合理等问题,为了寻找更加符合路面结构非线性服役行为的沥青路面结构分析方法,将材料非线性与层状体系相结合,研究3种典型路面材料模量依赖模型,建立材料模量与结构模量跨越的联系机制,提出了一种基于材料非线性的沥青路面结构分析当量计算方法,并通过足尺环道实测应变结果对方法的可靠性进行了验证。研究结果表明:基于材料非线性的沥青路面结构分析当量计算方法,其计算结果与足尺环道实测结果之间具有良好的相关性,方法可靠、合理,可以作为沥青路面非线性分析的一种计算手段;基于材料非线性原理构建的沥青混合料、半刚性材料和路基土的模量依赖模型,可以用于表征路面结构计算中的材料非线性特性;采用Mises等效应力可作为室内单一应力状态和现场复杂应力状态的联系机制,以协调室内试验模式和现场实际受力状态;当路面结构形式、荷载与环境条件确定时,路面结构的力学响应具有唯一性。所提出的当量计算方法一方面获得了一种确定路面材料回弹模量取值的有效技术途径,另一方面改进了沥青路面结构力学分析的合理性和可靠性,在非线性沥青路面分析理论和计算方法等方面具有一定的学术意义和应用价值。  相似文献   

18.
广东虎门辅航道连续刚构桥混凝土箱梁的温度梯度研究   总被引:9,自引:0,他引:9  
根据广东虎门辅航道连续刚构桥混凝土箱梁日照作用下的温度观测结果,研究箱梁沿断面高度方向的温度梯度分布规律。在参考国内外相关规范基础上,采用非线性回归方法提出该桥混凝土箱梁的温度梯度模式。利用空间有限元计算手段,针对箱梁的变形和应力对温度梯度模式的敏感性进行对比分析。研究结果表明,温度梯度模式对结构性能的影响很大。依据该桥温度观测数据提出的温度梯度计算模式可作为连续刚构桥混凝土箱梁日照温差作用下结构计算的重要参考。  相似文献   

19.
环境激励下桥梁结构模态识别与损伤检测的新方法   总被引:1,自引:4,他引:1  
已有的环境激励下模态参数识别的方法对模态频率的识别精度相对较高,而对位移模态的识别则误差较大。本文提出一种利用移动质量块在不同位置时对桥梁的模态频率进行多次测量,用各次测得的频率值确定位移模态的新方法,使得位移模态识别的精度接近频率识别的精度,推导了频率与位移模态关系的理论公式,并给出利用以曲率形式表示的单元模态应变能对结构进行损伤标定的基本方法。最后,通过数值模拟对该方法的有效性进行说明。  相似文献   

20.
基于性能的设计是桥梁抗震设计未来的发展方向之一,而基于位移的抗震设计方法是实现基于性能设计的最佳途径。预制拼装预应力混凝土桥墩的受力特性与普通钢筋混凝土现场浇筑桥墩的受力特性有较大区别,为了实现中高烈度区桥梁快速化施工建造,对基于位移的预制拼装预应力混凝土桥墩抗震设计方法进行研究。基于节点弯矩-曲率分析和非弹性位移反应谱,提出基于位移的预制拼装桥墩设计方法。首先根据基于性能的设计思想,结合预制拼装桥墩的受力特点,确定5个性能水平和对应的工程需求参数;然后推导塑性转动从接缝张开算起的目标位移的计算方法;提出单柱式预制拼装桥墩直接基于位移的抗震设计步骤,对该种旗帜形滞回响应结构的等效黏滞阻尼、非弹性位移反应谱、设计水平力、弹性开裂刚度等内容进行研究。以某拟静力往复加载试验预制拼装桥墩为例进行直接基于位移的设计,并进行纤维模型非线性地震时程分析,比较两者结果,验证所提方法的正确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号