首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
为了研究路面车辆在挡土墙上引起附加土压力的分布规律,结合330国道莲都至缙云段改扩建工程中悬臂式挡土墙的施工,在挡土墙的底板上方和立板内侧埋设了一系列的土压力盒,以工地施工用30 t自卸式货车为荷载源,采用定点停车方式加载,测试了路面车辆荷载(静载)引起的附加竖向和侧向土压力,并将测试结果与规范均匀分布法和弹性力学Boussinesq解进行了对比分析。结果表明:实测附加侧向土压力沿墙高呈非线性分布,峰值出现墙高的中部,峰值随车辆停车位置距挡土墙距离的增加而减小;底板上的附加竖向土压力在横断面方向上也为非线性分布;附加土压力实测值与现行公路设计规范采用的均匀分布法计算结果有较大的差异;若采用均匀分布法确定车辆荷载引起的附加侧向土压力,附加侧向土压力引起的弯矩或倾覆力矩可能被低估,使挡土墙下部的抗弯拉能力和抗倾覆能力不足,同时对于变截面挡土墙(墙身截面尺寸随高度增加而减小),可能造成墙身中上部抗剪强度过小而发生剪切破坏;实测附加侧向土压力的分布规律与Boussinesq解基本一致,但竖向附加土压力较Boussinesq解要大。建议在挡土墙(特别是重载道路挡土墙)设计时采用多车道同时作用有标准车辆时的Boussinesq解作为挡土墙的车辆附加荷载。  相似文献   

2.
为了研究加筋土挡墙在路基面荷载作用下的受力和变形特征,通过拉拔与原位荷载试验,进行了加筋土墙体水平土压力、墙面水平变形及拉筋应力等分布规律的研究。结果表明:筋材应力沿其长度方向呈单峰值分布,峰值距墙面1.5 m处;加载初期墙面水平位移沿墙高呈反"S"形曲线分布,极值位于墙顶和中下部;路基面荷载作用主要影响挡墙上部土压力分布,相应的侧向附加土压力近似呈倒三角分布;由于加筋土的扩散、卸载成拱效应的影响,使得竖向附加土压力向下衰减比传统挡土墙更快。  相似文献   

3.
鉴于现有的路基动态回弹模量试验中没有充分考虑超载车辆、行车速度、现有路面结构及车轮叠加效应对路基应力的影响,该文结合以上因素,选取3.0m为路基应力计算深度,分析动静荷载下路基应力的变化规律。结果表明:路基应力在动荷载下的值高于静荷载;随路面结构参数增加,路基总竖向应力和总侧向应力规律相似;随车辆荷载增加,路基总竖向应力显著增加,路基总侧向应力缓慢增加;随行车速度增加,路基总侧向应力增加幅度大于总竖向应力;最终给出了动荷载下路基应力的取值范围,为基于道路寿命的路面结构设计提供参考。  相似文献   

4.
针对桥梁限高杆限制载重的有效性和公平性,界定限高杆超载管控有效性和公平性的涵义,并提出其度量指标有效度和安全度的定义与计算方法。通过采集某桥梁区域路网内的车辆属性数据,基于车辆属性指标之间的相关性分析,对桥梁超载不同管控措施的有效性和公平性进行研究。结果表明,车辆载重与高度不存在线性相关关系;在2.0~2.4 m和2.4~3.0 m高度范围内限高杆的有效度可达90%以上;车辆载重随车辆轴数的增加呈单调递增趋势;限高杆和车型识别设备可在特定高度范围和轴数上通过控制高度和车辆轴数,间接达到控制车辆超载的目的,且有效度可达到90%以上。  相似文献   

5.
为探索车辆荷载作用下路基内动应力的分布及衰减规律,依托贵州惠罗高速公路项目,开展了不同载重和不同车速工况下的动应力现场测试试验。现场测试数据表明:影响路基动应力大小的参数主要有载重、路面平整度、路面结构等。在平整路面下,行车速度对动应力影响不大;而在不平整路面下,动应力将随行车速度的增大而增大;动应力峰值随载重的增加而显著增大,并呈现良好的线性正相关关系;同一条件下,动应力沿深度方向呈幂函数快速衰减。  相似文献   

6.
为更加准确方便地计算飞机滑行过程中对下穿飞机跑道的地铁区间隧道最不利作用位置的附加荷载值,将飞机22个轮子的最不利滑动荷载峰值作为飞机静荷载作用集中力,运用布辛奈斯克理论公式求解22个轮载作用下的地层附加应力值,分析不同埋深条件下最大竖向附加应力的分布规律和量值变化规律。根据荷载-结构法与飞机附加应力的理论解,确定下穿飞机跑道地铁区间隧道附加荷载的最不利分布模式,并通过回归分析得到飞机附加应力q1、q5的简化计算公式。最后通过数值模拟的方法验证了布辛奈斯克理论公式的适用性。研究结果表明: 1)随着隧道埋深的增大,飞机最大竖向附加应力与隧道竖向围岩压力的比值先迅速下降,随后缓慢下降,当隧道埋深大于50 m时,飞机最大竖向附加应力与竖向围岩压力的比值较小; 2)不同隧道埋深下的飞机最大竖向附加应力值点位置基本一致,位于距离飞机最后一排轮子2.1~3.3 m的中轴线上; 3)飞机附加荷载最不利分布模式为近似对称梯形分布模式,此时飞机最大竖向附加应力值点位于隧道拱顶正上方; 4)简化后的附加应力q1与隧道埋深z呈负相关关系,q5与隧道埋深z、隧道洞径D呈负相关关系。  相似文献   

7.
交通荷载作用下公路路基动力响应研究   总被引:1,自引:0,他引:1       下载免费PDF全文
针对双向四车道高速公路路基路面结构形式,建立有限元模型,施加三维一致粘弹性人工边界,并基于车辆动力分析理论,对模型施加交通荷载,从而获得了路基的动力响应参数。计算结果表明:标准轴载作用下,路基内3 m深度处,竖向动应力衰减率达80 %以上,路基内竖向动应力的影响深度为3 m左右;路基顶面的竖向动应力随着距车轮外缘距离的增大迅速降低,2 m范围内衰减约90 %,竖向动位移衰减约60 %,交通荷载对路基的影响宽度为6 m左右。  相似文献   

8.
结合广中江高速公路跨江桥梁钢管混凝土复合桩工程实际,采用数值仿真方法,对滨江大桥X3-15桩基础竖向承载特性进行数值仿真计算,并与现场试验成果进行对比分析,验证了有限元模型及参数的可靠性。在此基础上,深入研究了不同钢管埋深下钢管混凝土复合桩竖向承载特性的变化规律,计算结果表明,增大钢管埋深能有效提高钢管混凝土复合桩竖向极限承载力,钢管埋深在12m范围内增加时,桩基竖向极限承载力增加较快,钢管埋深每增加4m,桩基竖向承载力增幅2.0% ~2.2% ;钢管埋深超过12m后继续增加钢管埋深,桩基竖向极限承载力增加幅度较小,钢管埋深每增加4m,桩基竖向承载力增幅1.3% ~1.4% ;钢管混凝土复合桩竖向极限承载力由钢管段侧摩阻力、钢管段以下钢筋混凝土段侧摩阻力、钢管端部变截面处端阻力和桩端阻力组成;随着刚管埋深增大,钢管混凝土复合桩总侧阻力逐渐增大,总端阻力则均有所减小,钢管埋深由4 m增加至24 m时,桩基总侧阻力增大了6 382.8kN,增幅9.3% ,桩基总端阻力减小了6 382.8kN,减幅29.8% 。  相似文献   

9.
针对滨海新区软基特点,在现有道路工程低填方路堤或挖方段软土路基处理深度计算方法的基础上,根据车辆对道路产生的动应力影响,提出了考虑车辆动应力条件下的软土路基处理深度研究计算方法。分析确定车辆荷载模型,并通过室外道路车辆动应力采集,验证模型准确性。通过试验采集冲击数据,采用ABAQUS软件进行数值模拟,验证了土中动应力衰减的道路模型。在此基础上模拟计算出不同轴重、速度及交通量下的动应力影响深度,参照地基沉降计算方法及路基工作区定义,确定软土地基的处理深度,得到以下结论:考虑车辆动应力及路面铺装情况下,高速公路低填方软土路基处理深度应在1.10 m以上,一级公路为1.23 m以上,二级公路为1.31 m以上,三级公路为1.4 5m以上,视重载交通情况软土地基处理深度相应增加25~40 cm。  相似文献   

10.
基于应力波理论,从硬壳层与下卧软土层波阻抗具有明显差异角度,利用透射系数揭示了硬、软土层界面处具有动应力突变现象,该现象是硬壳层壳体效应在动力学范畴的一种具体表现。借助数值模拟手段获取车辆荷载作用下路基土中竖向动应力峰值的衰减规律,依据衰减曲线符合负指数函数特征,推导得出一种能综合表征动应力突变规律的土层界面传递系数,并给出了相应的计算方法及应用范围。通过实测数据验证,该方法较已有方法具有过程简单、精度高等特点。经高速公路工程的实践检验,考虑上覆硬壳层软土路基土层界面处的动力响应特征,路基土的力学状态能够得到正确评估,其残余变形值也会被降低。  相似文献   

11.
《中外公路》2021,41(4):246-251
湖底明挖隧道采用结构自防水与回填材料主动防水的方案,为研究高水位压力对湖底明挖隧道回填材料受力与变形的影响,通过现场试验测试了泥岩层、黏土层在不同埋深(1、5 m)下的土压力和孔隙水压力;利用数值模拟分析了回填层在不同上覆水位(分别为3、5、7和9 m)下的沉降变化规律。研究结果表明:随埋深增加,高水位压力对回填层土压力和孔隙水压力的上升程度加剧。埋深5 m处黏土层的土压力和孔隙水压力均最大;同埋深下泥岩层较黏土层承受的土压力和孔隙水压力较小。随着上覆水位压力增大,回填层累计沉降值不断增大;埋深1 m处黏土层的沉降累计最大,达到0.028 m。相同压力和埋深下,泥岩层的受力与位移较黏土层均较小,作为回填材料更具工程稳定性。  相似文献   

12.
公路的桥台一般要求在路堤施工完成后施工,但是为了缩短工期,公路的桥台施工常常先于路基填筑。路基填筑碾压对桥台产生挤压作用,不利于桥台稳定。该文结合盐城市范公路某桥台路基填筑工程,现场监测路堤分层填筑碾压过程中桥台上的土压力和位移,根据实测数据分析结果显示,碾压对竖向土压力几乎没有影响,但大大增加了水平土压力。与土压力理论计算值比较,竖向土压力可以用土压力理论公式计算,水平土压力随填土高度增加并不是呈线性增长,当填土到达桥台高度的一半后便不再增长。  相似文献   

13.
为研究填土及道面自重荷载、施工车辆荷载作用下通道侧壁和路基内的土压力特征,对我国贵州某机场下穿通道开展高填方机场下穿通道侧壁土压力测试,通过对比根据土压力盒实际测得的压力值与根据填土厚度计算得到的值,进行处理分析。试验结果表明:无荷载作用时,回填高度越高,土压力值越大,且增大的幅度与填土厚度近似为正比关系;随着回填土厚度增加,α值沿回填方向的分布因填土厚度的增大而由初始的近似线性递增趋势转变为一条近似趋于稳定的直线,填土厚度越高,α值越趋近于0.1~0.15;荷载作用下,埋设较浅的土压力盒对压力值的变化更为敏感,荷载影响深度大约为1.52~2.81 m;车辆行驶方向对土压力的大小无明显影响。  相似文献   

14.
为研究CFG桩对高速铁路软土路基的加固效果,以福州至平潭高铁松下车站为依托,采用弹塑性有限元法,在模拟列车移动荷载的基础上,对软土路基在采用CFG桩加固前后的动力响应进行分析,研究了竖向速度、加速度及压应力的一般规律。结果表明:在CFG桩加固后,路基面竖向速度和加速度在路基面下0.3m以内减幅相对较小;0.3~3m范围内衰减速度较快;3m以上时,减幅基本接近0;CFG桩在减少列车动荷载对路基影响方面加固效果明显。  相似文献   

15.
重载铁路泥岩路基沉降数值分析   总被引:1,自引:1,他引:0       下载免费PDF全文
邓永驰 《路基工程》2014,(1):121-124
以内蒙古鄂尔多斯铁路工程为例,使用有限元分析方法建立了DK16+559断面的分析模型。计算模拟出列车以一定的速度移动过程中产生的竖向动荷载,将模拟出的列车荷载施加在路基路面上,得到路基沉降分布。结果表明:列车行驶速度在60 km/h时,路基最大沉降量为4.74×10-3 m,发生在路基表面,沉降沿竖向和水平方向逐渐减小,在深度为7.5 m处沉降趋于零;在相同行驶速度下,沉降随着深度的增加逐渐减小;随着列车行驶速度的逐渐增大,路基土体沉降的均值基本没有增大,但是变化幅值越来越大。  相似文献   

16.
路基悬锚式挡土墙是一种新型的挡土墙,其墙背土压力分布与常规挡土墙墙背土压力分布规律不同,不能套用现有的公式进行计算。根据其受力特点,结合项目研究的需要和依托工程的实际情况,确定了以墙高8,9,10 m这3种工况对路基悬锚式挡土墙的墙背受力情况及土压力分布情况进行现场试验和跟踪检测。通过实体工程的实测数据及其结构特点对悬锚式挡土墙的墙背土压力进行了分析,并与墙后土压力设计值及修正后的公式计算值进行了对比。结果表明:路基悬锚式挡土墙各测试点的墙背土压力随时间逐渐增大并趋于稳定,沿墙高呈3段式非线性分布;墙背土压力近似分布图形可以参照现有锚定板挡土墙的计算方法得出,但需进行修正,土压力系数宜取1.2~1.4;为提高挡土墙墙背的受力均匀性及挡墙的整体稳定性,第1层锚杆高度与底板的距离宜为挡墙建筑高度的1/3且距离底板不宜大于2.5 m,各锚杆层间高差宜为2.5~3 m;墙背最上层锚杆位置由于受土压力较小,因此最上层锚杆布设高度宜为距墙顶1/3高处,且适宜高度为2~3 m;悬锚式挡土墙的双层锚杆与锚定板型式建筑高度宜为6~10 m,3层锚杆与锚定板型式建筑高度宜为10~12 m。  相似文献   

17.
为研究行车荷载下不同沥青路面结构的动力响应,验证、完善我国沥青路面设计方法,在两种倒装式和传统半刚性基层沥青路面结构内部埋设沥青应变计、土压力计和垂直大变形应变计等传感元件,以单后轴货车为行车荷载,现场开展了不同轴重、不同行车速度及制动工况下3种路面结构的动力响应测试。以沥青层层底纵向应变与横向应变、路基顶面土压力和过渡层底部竖向压应力与竖向位移为评价指标,分析了不同沥青路面结构的动力响应规律。结果表明:随行车速度增加,各路面结构沥青层层底应变、过渡层竖向压应力与竖向位移均明显减小;从拉应变循环幅值看,半刚性基层结构随车速的变化更敏感;相同轴重和车速下半刚性基层结构路基顶面的压应力远小于倒装式结构,半刚性基层结构荷载扩散能力更优;相同车速下,3种路面结构沥青层层底纵向应变循环幅值和路基顶土压力均随轴重增加而增大,且半刚性基层结构的增幅相对更大,即半刚性基层结构对荷载更敏感,倒装式结构对荷载适应性更强;车辆制动会引起沥青层层底残余应变、纵(横)向应变与应变循环幅值大幅增加,频繁制动易引起路面车辙变形和加速路面沥青层疲劳破坏。  相似文献   

18.
高登 《公路》2011,(11)
开展了Trapdoor试验来模拟砂土层中盾构隧道的开挖,研究了Trapdoor上部竖向土压力的转移机理,总结了国内外土拱区侧压力系数K的取值,与试验结果进行了对比并给出其建议值。分析结果表明,隧道上覆土体通过拱效应把作用在衬砌管片上的部分竖向土压力传递到两边不动土体,从而导致竖向土压力明显减小,而水平向土压力有所增加;当土拱效应充分发挥时,按侧压力系数K=1计算得到的Trapdoor上部竖向土压力与试验结果比较接近。  相似文献   

19.
肖芳炎  苏谦 《路基工程》2021,(3):197-201
为探究电化学加固整治铁路路基基床翻浆冒泥病害技术可行方案,构建1∶1模型试验槽,埋设电极管对翻浆冒泥土样进行电化学排水胶结。分析典型位置土样的物理力学性质变化、排水速率以及电流强度变化,结果表明:电极对间距选用1.2 m可使土体加固效果较均匀;当电极对埋深30 cm,至少可有效处理40 cm深土体;处理1.0 m长路基所需电能不超过120 kW·h;通电结束条件,以排水速率降低至不足初始排水速率的1/10为宜。  相似文献   

20.
《公路》2015,(7)
互锚式挡土墙具有整体性好、抗震能力强等特点,但由于锚杆的互锚作用,其土压力的分布规律较传统挡墙差异很大。为研究互锚式挡土墙的土压力分布规律,进行了室内模型试验和FLAC3D数值计算。模型试验在墙后不同填土深度埋设土压力盒,监测了墙不同填土高度的竖向土压力、侧向土压力以及土压力的横向分布。对照模型试验结果,利用FLAC3D数值计算对模型试验结果进行了验证。结果表明:互锚式挡土墙土压力分布存在明显的三维土拱效应;竖向土压力、侧向土压力和横向土压力均呈非线性分布;竖向和侧向土压力的峰值出现在锚杆附近。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号