首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为研究不同复合膨胀剂掺量对自密实混凝土收缩性能的影响,通过优化配合比,获得两种不同复合膨胀剂掺量的自密实混凝土,并以普通混凝土为基准,分别将其拌和物工作性、限制膨胀率、抗压强度、早龄期自收缩性能和体积稳定性进行对比分析。研究结果表明:复合膨胀剂能有效改善拌和物离析性能;基准混凝土成型后均表现为收缩状态,而自密实混凝土的体积先微膨胀后自收缩,且收缩变化并不明显;干燥失水条件下,基准混凝土随着龄期的增加,体积稳定性一直呈收缩变化,而自密实混凝土的体积收缩率呈先涨后缩变化,及时、充分对自密实混凝土进行保湿养护,  相似文献   

2.
为了研究超高性能混凝土的收缩特性以及膨胀剂对超高性能混凝土收缩的影响,在实验室制备了未掺膨胀剂和掺膨胀剂2种超高性能混凝土,依据相关规范进行力学性能、自收缩和干燥收缩性能试验,分析2种超高性能混凝土自收缩和干燥收缩的变化规律。试验结果表明:2种混凝土都具有超高的工作性能和力学性能;超高性能混凝土早期自收缩发展迅猛,自初凝时间起的20h内自收缩发展较快,20h后自收缩增长变缓,掺加膨胀剂后自收缩变化趋势相同,但自收缩减小;超高性能混凝土长龄期干燥收缩能较快趋于稳定,且在数值上远小于自收缩,90d的干燥收缩仅为3d自收缩的14.3%,膨胀剂对干燥收缩有不利影响。  相似文献   

3.
为研究膨胀剂与橡胶颗粒对混凝土抗压强度与抗折强度的影响,研究了在混凝土中掺入不同种类及不同掺量的膨胀剂和不同比例的橡胶颗粒的力学性能。试验结果表明,在混凝土中加入膨胀剂能提高混凝土的抗压强度,抗折强度,弥补了橡胶加入后混凝土强度的部分减少量,其中膨胀剂掺量为10%,橡胶掺量为6%时,两者复掺的性能优于其他掺量的混凝土试件,CSA膨胀剂的掺加对混凝土试件强度的提高要优于CHA膨胀剂。  相似文献   

4.
《公路》2015,(9)
通过调整胶凝材料中矿物掺合料的种类、掺量,研究了单掺矿粉、粉煤灰及复掺上述两种矿料对海工混凝土抗氯离子渗透性及抗压强度的影响。研究表明,与纯水泥混凝土相比,单掺矿粉、粉煤灰均会降低混凝土7d抗压强度,且强度与掺量成反比关系;单掺矿粉对混凝土28d强度无明显影响,且会增强28d混凝土抗氯离子的渗透性能,掺量达35%后增强效果不明显;混凝土性能对粉煤灰极为敏感,当掺入50%粉煤灰时,28d强度下降37%,氯离子扩散系数为纯水泥混凝土的4.4倍。  相似文献   

5.
为研究钢渣微粉代替部分矿粉配制超高性能混凝土(UHPC),针对级配设计中的因素影响问题,利用正交试验法对钢渣微粉UHPC的配合比进行优化设计,研究硅灰、钢渣微粉、河砂、钢纤维等4个因素掺量对钢渣微粉UHPC抗压强度的影响。研究表明:钢渣微粉、钢纤维掺量对钢渣微粉UHPC的抗压强度影响较大,河砂、硅灰掺量对其影响较小;UHPC抗压强度随硅灰、河砂、钢纤维掺量的增加先增大后减小,随钢渣微粉掺量增加逐渐降低;在基础配合比的基础上,将硅灰掺量增加10%、钢渣微粉减少10%,河砂增加10%,钢纤维体积掺量增加1.5%后,制备出的钢渣微粉超高性能混凝土效果最佳,强度可达到140 MPa。  相似文献   

6.
大型隧道薄壁混凝土衬砌收缩开裂严重地影响其使用功能和寿命,通过温度应力试验机和平板法试验对衬砌混凝土早期应力和开裂等变形性能进行了测试,探讨了新型膨胀剂和纤维复掺对混凝土衬砌早期塑性开裂性和应力的影响。试验结果表明:掺6%~8%的膨胀剂可有效补偿和减少衬砌混凝土收缩,应力储备提高了25%,降低了隧道混凝土衬砌开裂。  相似文献   

7.
为了优化超高性能混凝土(Ultra High Performance Concrete,UHPC)制备方法,采用宏观力学试验与微观电镜技术相结合的方法,探讨不同配合比和养护条件对UHPC内部微观结构的影响。基于硅砂骨料的致密堆积级配,设计21个变量组,共制作了63个立方体试件,开展UHPC流动度试验、轴压试验和扫描电镜试验,分析水胶比、砂胶率、钢纤维掺量、消泡剂掺量、养护方法、龄期等因素对UHPC工作性能、抗压性能及其微观结构的影响规律以揭示UHPC的增强机制。研究结果表明:凝胶与骨料界面过渡区(ITZ)是UHPC内部的薄弱环节,提高ITZ的密实度和强度是增强UHPC的关键;UHPC的流动度随着水胶比的提高显著增大,但其抗压强度随着水胶比的提高先增大后降低;过高的砂胶率不利于UHPC工作性能,同时会造成其抗压强度下降;掺入消泡剂可以有效提高UHPC的表观质量,但可能会降低UHPC的工作性能和抗压强度;掺入2.5%的钢纤维能大幅提高UHPC的抗压强度,并明显改善其脆性特征,但会降低工作性能;高温养护能显著激发微硅粉和矿渣的火山灰效应,使UHPC的4 d抗压强度比常温养护提高约50%,有明显的早强优势,但存在后期强度下降的可能。  相似文献   

8.
污水处理厂生物反应池预制拼装施工复杂,超高性能混凝土(UHPC)湿接缝连接部位施工不当可能产生裂缝。结合工程实例,分析了UHPC收缩机理,通过研究不同分组对UHPC收缩的影响,提出采用粉煤灰和膨胀剂双掺的方法,有效控制UHPC的收缩变形,为现场UHPC施工的裂缝控制提供有力保障。  相似文献   

9.
根据超高性能混凝土材料特点,采用最紧密堆积理论,研究设计了超高性能混凝土配合比,通过抗压强度和抗折强度试验,对超高性能混凝土的原材料进行优选,并优化配合比设计,为制备综合性能优越的超高性能混凝土提供理论依据。结果表明,只掺加粒径1 mm石英砂的UHPC的28 d抗压强度高于掺加河砂对照组的28 d抗压强度值。用粗集料、细集料和粗细集料取代河砂时,UHPC的28 d抗压强度无明显增加。  相似文献   

10.
针对云南格巧高速公路双河特大桥C60巨型塔柱大体积高强混凝土在干热河谷地区体积稳定性控制要求,采用L16(44)正交试验,以水胶比、胶凝材料、矿物掺合料取代量、粉煤灰与矿粉复合比例为四因素,研究分析混凝土抗压强度和绝热温升为指标最优设计方案,并通过收缩变形试验优化配合比。结果表明,影响混凝土强度因素逐次为水胶比胶凝材料复合掺合料比例矿物掺合料掺量;影响混凝土绝热温升因素逐次为水胶比胶凝材料矿物掺合料掺量复合掺合料比例;粉煤灰和矿粉均可降低水化放热,并抑制混凝土自收缩和干燥收缩,且粉煤灰收缩抑制效果优于矿粉。  相似文献   

11.
为配制出适用于大跨度桥梁工程的高性能混凝土,通过掺加大掺量优质的粉煤灰、矿粉,降低水胶比的方法,进行C60低收缩徐变高性能混凝土的配制与试验研究。试验结果表明:采用优化设计混凝土配合比配制出的混凝土拌合物出机坍落度为170~215 mm ,2 h坍落度损失较小,压力泌水率较低,表现出良好的工作性能;混凝土28 d抗压强度较高,达到C60强度等级;掺加矿物掺合料的混凝土具有较低的收缩和徐变,与不掺矿物掺合料的混凝土相比,长龄期(360 d )的收缩和徐变值降低了30%~50%;通过掺加大掺量矿物掺合料、降低水胶比的方法可以配制出C60低收缩徐变的高性能混凝土,该混凝土可用于塔柱和预应力混凝土箱梁中。  相似文献   

12.
为研究不同聚羧酸减水剂掺量对超高性能混凝土性能的影响,制备含有不同减水剂掺量的超高性能混凝土,并对其流动度、抗压强度、收缩性能及抗氯离子渗透性能进行对比分析。结果表明,减水剂掺量对超高性能混凝土早期抗压强度与流动度影响存在临界点,超过临界点后,增加减水剂掺量,UHPC流动度保持稳定,但早期和后期抗压强度有不同程度下降。增加减水剂掺量,超高性能混凝土早期自收缩降低,而长期干燥收缩和电通量值显著增加;减水剂掺量越大,继续增加减水剂掺量时超高性能混凝土电通量值增长越快,抗氯离子渗透性能降低明显。  相似文献   

13.
为明确室内环境下普通及补偿收缩超高性能混凝土(UHPC)的收缩徐变特征,分别对这2种超高性能混凝土进行持续1 080 d的力学、收缩和徐变性能测试,分析了补偿收缩组分对超高性能混凝土性能的影响规律。基于收缩和徐变的试验结果,分析了国内外3种不同规范公式对室内环境下超高性能混凝土收缩徐变预测的适用性,并引入相应的修正系数对既有收缩徐变模型进行修正,使之适用于补偿收缩超高性能混凝土的收缩徐变预测。结果表明:①补偿收缩组分的加入对超高性能混凝土的力学性能有负面影响,使立方体抗压强度、棱柱体抗压强度和弹性模量分别降低4.3%、5.1%和4.2%。②UHPC棱柱体抗压强度和弹性模量与立方体抗压强度间存在良好的统计关系,且该统计关系受配合比和龄期的影响较小。③补偿收缩组分能有效抑制超高性能混凝土的收缩,使收缩降低28.9%,但对徐变有负面影响,使徐变应变、徐变系数和徐变度分别增加13.3%、9.3%和15.8%。④DBJ43/T325—2017的收缩、徐变模型对室内环境下普通超高性能混凝土的收缩徐变均给予较好的预测,预测误差分别在4%和6%以内;SIA 2052—2016仅有收缩模型的预测结果与实测结果较好地吻合;引入收缩和徐变修正系数后的修正模型能分别对补偿收缩超高性能混凝土的收缩和徐变予以较好地预测,预测误差也分别在4%和6%以内。  相似文献   

14.
研究了粉煤灰和钢渣的单掺和双掺部分取代水泥作为胶结料对透水混凝土性能的影响。结果表明:单掺粉煤灰对透水系数没有明显影响,但是使早期抗压强度降低,后期抗压强度升高;单掺钢渣使透水混凝土的早期抗压强度降低,后期抗压强度先升高后降低。粉煤灰和钢渣的双掺对胶结料各组分的水化具有协同促进作用,显著提高透水混凝土的强度。当粉煤灰掺量为15%~20%,钢渣掺量为10%~15%时,透水混凝土的抗压强度较高。  相似文献   

15.
研究了单方粉体材料和矿物掺合料变化对自密实混凝土工作性和力学性能的影响。结果表明:粉煤灰掺量为30%左右时,自密实混凝土具有较好的工作性。随单方混凝土中粉体材料的增加,各组混凝土T50均降低,且掺入粉煤灰和矿渣的混凝土坍落度显著增大。粉体材料掺量为450kg/m3时,所测自密实混凝土工作性能满足使用要求。当粉体材料掺量不大于450kg/m3时,各组混凝土1d抗压强度均大于5.0MPa,且掺入30%粉煤灰和矿渣的混凝土28d抗压强度均大于25.0 MPa。  相似文献   

16.
选用3种有机硅憎水剂材料,分别将不同掺量(0、0.1%、0.3%、0.6%、1.0%,有效成分占水泥质量比)的憎水剂内掺到透水混凝土中,通过抗压强度、有效孔隙率、透水系数和吸水率试验,研究不同类型不同掺量有机硅憎水剂对透水混凝土性能的影响。结果表明:3种有机硅憎水剂均不同程度地降低了试件28 d龄期的抗压强度,且都存在最佳掺量;乳液型憎水剂较粉末型憎水剂对28 d龄期下试件的抗压强度影响更小,硅烷乳液在最佳掺量0.6%时,其抗压强度仅下降2.0%;内掺有机硅憎水剂均加大了试件有效孔隙率,最佳掺量下其透水系数显著增大,最大增长率为133.3%;憎水剂在透水混凝土孔隙中形成膜结构,对试件吸水率有较大影响,吸水率较对照组最大可降低50%。研究成果可以为有机硅憎水剂材料在透水混凝土领域的实际工程运用提供一定的技术参考。  相似文献   

17.
郭保林  左峰  王宝民 《公路》2006,(10):175-180
有关掺纳米二氧化硅混凝土的力学性能和纳米二氧化硅对过渡界面微观结构的改善等方面,已经有了较为明确的结论,但是纳米二氧化硅对混凝土自收缩的影响鲜有报道。采用安明等人提出的测试方法,通过试验研究了纳米二氧化硅掺量(0、3%、5%)、水胶比(0.25、0.34)和引气剂(0、0.015%)水平对混凝土自收缩的影响。试验结果表明:(1)掺入纳米二氧化硅会提高混凝土的自收缩应变,在初凝至1 d龄期之间尤为明显;(2)水胶比对混凝土的自收缩影响非常大,水胶比越低,混凝土的自收缩越大,初凝至1 d龄期内的自收缩占28 d自收缩的比例越大;(3)引气剂能够明显地降低混凝土在各个龄期时的自收缩应变。  相似文献   

18.
以工程常用的3种矿物掺和料:粉煤灰、矿渣微粉以及硅灰单掺和双掺为主要因素,通过试验设计制作了一批不同配合比的再生混凝土试块,考察各因素对再生混凝土抗压强度和抗折强度的影响规律。试验结果表明:3种矿物掺和料对再生混凝土的强度均有一定程度的提高,其中单掺时以硅灰最能提高其抗压强度,粉煤灰最能提高其抗折强度,当双掺硅灰和粉煤灰时能使其抗压强度和抗拉强度的提高达到最佳。  相似文献   

19.
通过ICAR流变仪、分层度测试仪和多功能力学试验机,研究了微珠黏度改性剂、复合黏度改性剂及其掺量对混凝土塑性黏度、屈服应力、分层度及力学性能的影响,揭示了微珠黏度改性剂和复合黏度改性剂对大流态新拌混凝土流变特性及匀质性的影响规律,并指出了适量掺入的优点及超量掺入的缺点,最后,结合北京市某工程泵送混凝土的应用情况,提出了可泵送、塑性黏度及分层度的关系。结果表明:掺入微珠黏度改性剂或复合黏度改性剂均能显著降低混凝土拌和物的塑性黏度和屈服应力,且随着它们掺量的增加,屈服应力、塑性黏度及分层度均呈现先减小后增大规律;同掺量下微珠黏度改性剂对混凝土拌和物浆体匀质性的破坏力大于复合黏度改性剂,即分层度大,然而降黏效果相反;当黏度改性剂掺量小于30%时,混凝土28 d抗压强度均大于空白样,但掺量大于30%时,28 d抗压强度均小于空白样。工程应用表明,长距离或高层泵送混凝土,并不是塑性黏度越低越好,而是存在一个合理范围,这个范围使得混凝土拌和物是一个触变性的匀质的黏性混合物,根据应用统计分析,可采用塑性黏度与分层度的交集表示混凝土可泵区间,其表达式为:[(0,塑性黏度)∩(0,分层度)]。  相似文献   

20.
高原  陈卫霞  谢恩慧  任京华 《公路》2022,(4):311-316
采用环约束试验,对3类等强度混凝土(标养28 d约50 MPa)——普通混凝土(OC)、传统纤维混凝土(ECC)和低收缩纤维混凝土(HP-ECC)的抗裂性能进行了对比;并通过接触式收缩试验,对三者体积稳定性的差异进行了分析。环约束试验显示,OC和ECC均出现开裂,OC的开裂时间为16 d,有一条明显裂缝;ECC第1条裂缝出现时间为14 d,试验进行至56 d时,ECC共出现9条均布裂缝;而HP-ECC至112 d龄期始终无裂缝。收缩试验显示,HP-ECC的干燥收缩值较OC、ECC分别降低68%和82%。低收缩纤维混凝土的抗裂性能明显高于传统纤维混凝土,与其他方法相比,使用低收缩复合水泥是解决ECC约束收缩开裂的有效手段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号