首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
沥青混凝土铺装桥面产生的高温会在箱梁内引起温差分布,导致温度变形,从而产生温度应力。目前,我国规范未对高温沥青摊铺引起的桥梁结构的温度场分布作出规定,故由其引起的温度应力在设计中尚未考虑。本文在借鉴国内外箱梁温度应力理论与方法的基础上,利用了ANSYS软件建立预应力钢筋混凝土连续梁桥三维实体模型,分别计算日照温度场、高温沥青摊铺温度场和设计活荷载下桥梁的应力状态。通过对比分析,研究了在实桥模型下,日照温度场和高温沥青摊铺温度场所引起的桥梁应力异同。  相似文献   

2.
高等级公路桥已广泛采用沥青混凝土铺装,而沥青混凝土摊铺时的温度往往高达150℃左右,如此高的温度必然会在桥梁结构中引起不利的温度场.沥青摊铺对钢筋混凝土箱梁桥温度场的影响是多方面因素共同作用的结果,通过对诸如梁体初始温度、沥青下料温度及摊铺层厚度等影响因素的数值分析,提出了考虑各种影响因素的温度梯度分布模式,为钢筋混凝土箱梁桥在沥青摊铺作用下的温度场和温度效应的分析计算提供了一种简化的计算公式.  相似文献   

3.
高温沥青摊铺作为沥青混凝土桥面施工的一个环节,会对混凝土箱梁顶板的横向受力产生不利影响。该文首先提出沥青摊铺时的温度梯度分布模式,然后结合某桥沥青摊铺时的温度实测数据,得到顶板表面在接触传导后的当量温度值,并利用实体有限元进行了混凝土箱梁顶板的横向应力分析。结果表明:沥青摊铺会在箱梁顶板产生较大的横向拉应力,增设调平层能有效减少混凝土箱梁顶板在沥青摊铺时的温度效应,有利于防止箱梁顶板的纵向开裂。  相似文献   

4.
中国规范尚未对桥梁结构在高温沥青摊铺时的温度场做出规定,由其引起的温度应力也尚未考虑。该文以柳州市某钢-混叠合简支梁桥为例,利用大型有限元软件Ansys建立横向平面模型,进行了高温沥青摊铺时的瞬态热分析,拟合了高温沥青摊铺作用下叠合梁竖向最大温差计算公式,并与中国规范关于日照温度作用下竖向温度梯度进行对比。结果表明:高温沥青摊铺温度场降温在前2h最快,实际工程中可适当洒水加快降温;组合截面竖向温差最大达到70.47℃,最不利温差曲线服从指数分布;高温沥青摊铺下钢-混叠合梁竖向最不利温度梯度大于日照温度场引起的温度梯度,在以后的设计中应当引起重视。  相似文献   

5.
沥青混凝土高温摊铺所引起的钢桥正交异性板结构温度效应备受关注,为研究高温摊铺引发的钢梁支座体系温度效应,依托九江长江大桥的公路桥加固改造工程,采用生死单元法模拟了钢桥面沥青混凝土动态摊铺施工过程,建立了密支座钢梁摊铺温度场模型,结合现场温度监测数据确立了高温摊铺下钢梁节段的温度场时空分布规律,在此基础上,仿真模拟了不同工况下钢梁支座体系的力学响应,并剖析了高温摊铺下支座体系温度效应的影响因素。研究结果表明:沥青混凝土高温摊铺下钢桥面板的温度先急剧上升,摊铺完成约12 min后逐渐下降直至稳定,夏季热拌环氧沥青混凝土(摊铺温度为185℃)摊铺下钢桥面板的最高温度达到96.1℃,钢梁节段的竖向最大温差达到55℃;高温摊铺会导致钢梁支座体系产生较大的支反力,摊铺宽度增大,支反力显著提高,当摊铺宽度超过5 m时,支座最大竖向拉力将超出其承载能力,当摊铺宽度超过8 m时,最大横向支反力将超出支座承载能力;对于纵向有连续固定支座的钢梁节段,纵向连续固定支座数目对竖向支反力和横向支反力的影响较小,但高温摊铺时会产生远超支座承载能力的纵向支反力,支座结构存在安全隐患。研究可为类似钢梁支座体系的沥青混凝土摊铺施工方案设计和支座处置提供理论支撑。  相似文献   

6.
介绍了太平大桥混凝土箱体温度场的测试方案、测点布置及大气自然条件下箱体断面温度场的测试结果,并分析了箱体温度变化规律,为计算太平大桥施工过程中照温差引起的箱梁温度应力和施工控制中照温差引起的标高变化提供依据,也为《公路桥梁设计规范》补充制定“箱梁日照温差梯度形式”积累资料。  相似文献   

7.
以新疆小沙河中桥为背景,通过试验实测与有限元分析,研究西北极寒地区混凝土箱梁温度场分布特点及其温度效应。选取2016年1月20日至2016年2月20日实测温度数据作为研究对象,分析结果表明:受太阳辐射的影响,梁高方向存在明显的温度梯度,测点T1,T4最大温差达到6.4℃,测点T4,T6最大温差达到5.6℃;腹板壁厚方向存在明显的温度梯度,测点T3,T5之间最大温差达到5.6℃;底板沿壁厚方向存在明显的温度梯度,测点T7,T8之间最大温差达到8℃。基于传热学分析理论,建立混凝土箱梁温度场有限元模型,选取2016年1月27日06:00到2016年1月28日06:00的实测温度数据,验证了混凝土箱梁温度场有限元模型的准确性。在验证有限元模型准确性基础上,计算日照升温和寒潮降温作用下混凝土箱梁梁高、腹板以及底板壁厚方向的温度场分布,计算分析最不利时刻温度场作用下的混凝土箱梁的温度效应,并与现有规范进行对比。研究结果表明:西北极寒地区带沥青铺装的混凝土箱梁竖向温度梯度与规范有所差别,箱梁顶板温差较小,而底板温差较大;日照下腹板温度高于顶板,降温时顶板温度高于腹板;温度效应计算较规范更为不利,降温时在底板产生的拉应力可能使混凝土产生开裂;在进行西北地区混凝土箱梁的设计计算时,建议根据桥位处气象数据对温度效应进行分析。  相似文献   

8.
飞云江五桥为五跨连续钢桁系杆拱桥,采用浇注式沥青混凝土桥面铺装,为分析浇注式沥青混凝土摊铺过程对钢桥面系及桁架系的影响,进行了桥面板温度场实时测试,得到了随摊铺进程的桥面板升温规律和温度场分布特点。在此基础上,拟合得到了摊铺时沿桥纵向和横断面温度场曲线,并通过建立的有限元模型,计算分析了钢桥面系及桁架系的温度效应,评估了本次摊铺对钢桥结构的应力影响,可为同类钢桥面浇注式沥青混凝土摊铺安全性分析提供参考。  相似文献   

9.
通过红外热像仪对沥青路面下面层摊铺面和碾压面进行温度均匀性探测,同时采用无核密度仪(PQI)对面层压实度进行无损快速检测,探索AC-25沥青混合料温度离析状态下压实度变化规律。结果表明:细部瑕疵造成的点状离析对沥青混合料压实度影响较小,而呈带状的横向或纵向离析因沥青混合料本身交换热作用范围有限,其对沥青混合料压实度影响显著。根据红外热成像技术及沥青混合料压实度无损检测技术可有效确定初夯后路表临界温度,在大气温度为13℃条件下,沥青混合料路表临界温度宜控制在115℃以上。对于不同温度离析程度的测点进行压实规律测试分析表明:沥青混合料随着压实次数增加压实度逐渐增大,低于临界温度的离析点可一定程度增加压实功而改善压实效果。  相似文献   

10.
为确定浇注式沥青铺装施工对钢桁梁正交异性钢桥面板受力状态的影响,以杨泗港长江大桥为背景,采用自主搭建的物联云平台实时监测,并结合节段有限元分析方法,对铺装施工期桥面板温度场特征进行研究。在数值分析的基础上,确定测点位置,实测得到铺装施工期正交异性桥面板横隔板和U肋等的竖、横向温度传递规律及应力分布特性。结果表明:测点处温度达到最大值的时间平均滞后于摊铺时间(时滞)约30 min,温度沿横隔板竖向呈梯度分布,且升温快降温慢;铺装温度影响时长约6 h,铺装温度在横隔板竖向影响范围从其顶部向下约60 cm;沥青温度242℃时,摊铺后的桥面板底面升温最大值为98.1℃(均值约93.3℃),铺装温度影响下的横隔板横桥向拉、压应力分界线距离横隔板顶部约30 cm,应力最大值约113 MPa。  相似文献   

11.
装配式混凝土箱梁在温度作用下产生的结构次内力是造成其开裂的重要因素。为研究装配式混凝土箱梁在梯度温度作用下的温度应力分布,对4种不同国家设计规范梯度温度模式下装配式混凝土箱梁温度场进行分析。通过建立某五跨装配式混凝土箱梁实体单元模型,施加温度荷载,对不同温度场下连续装配式混凝土箱梁的应力与变形进行计算。结果表明,装配式混凝土箱梁在梯度温度作用下产生次内力,各国规范温度模式在混凝土箱梁中产生的温度效应差别较大。纵向应力最大值出现在箱梁顶板下缘梗腋处,不同工况下最大相差71%;横向应力最大值出现在混凝土桥面板内,不同工况下最大相差113.8%;全桥最大主拉应力出现在次边跨,不同工况下最大相差66.7%。故认为在进行设计时应考虑最不利的梯度温度作用对装配式混凝土箱梁的影响,避免拉应力超出限值。  相似文献   

12.
为了解水泥混凝土桥面自破冰铺装结构层的温度场分布,运用数值分析方法,建立有限元模型,对T形梁和箱形梁这两种典型形式桥梁的桥面自破冰铺装结构进行了温度场分析。结果发现,梁体对铺装层具有明显的保温作用,这为桥面自破冰铺装材料的设计提供了依据。  相似文献   

13.
为了对混凝土箱梁温度梯度中温差取值的地域差异性和分区进行研究,对一混凝土箱梁桥开展长期温度场测试与有限元数值模拟,通过实测数据给出混凝土箱梁竖向温度梯度曲线形式,采用广义极值分布得到温度梯度中的温差代表值。建立有限元模型对中国34个主要城市混凝土箱梁温差进行计算,以地理、气象参数回归计算温差代表值的经验公式,在此基础上,对中国361座城市的混凝土箱梁温差代表值进行初步分区。研究结果表明:基于实测数据的混凝土箱梁竖向温度梯度曲线接近于新西兰规范推荐的"顶部5次抛物线"和"底部线性段"的形式;混凝土箱梁的顶部温差T1和底部温差T2分别服从参数为W(6.86,4.49,-0.42)和W(-0.32,1.46,-0.40)的Weibull分布,广东东莞地区混凝土箱梁顶、底部50年重现期的温差代表值分别为17.3℃和3.1℃;建立了以纬度l、海拔H和日温差TV为参数的混凝土箱梁顶部温差代表值T1,ref和底部温差代表值T2,ref的经验公式,可以很好地反映中国混凝土箱梁温差取值的地域差异性,与已有研究成果亦可相互验证;基于经验公式,初步将中国划分为4个区域进行温差取值,4个区域T1,ref的取值分别为18℃,20℃,23℃,29℃,T2,ref的取值分别为4℃,5℃,6℃,7℃;提出的经验公式和温差代表值分区仅适用于100 mm沥青铺装的混凝土箱梁,研究方法和结论可为中国规范关于混凝土箱梁桥温度作用的完善提供参考。  相似文献   

14.
大连滨海大道西延伸线张柏2号高架桥主桥为(50+96+192+70)m S形曲线钢箱梁斜拉桥,桥面铺装层采用热浇注式沥青混凝土摊铺方法施工,摊铺过程中出现了结构位移和应力较大等异常情况。为了解异常情况产生的原因,采用ANSYS软件建立全桥有限元模型(钢箱梁采用壳单元模拟),分析摊铺过程中温度引起的桥塔纵、横向位移,以及主梁纵向、竖向位移和纵向应力。结果表明:摊铺温度导致结构产生较大的位移和应力,主梁和桥塔纵向位移均达22.8 cm,主梁最大竖向位移为25.9 cm,钢箱梁最大拉应力为143 MPa;摊铺过程中,结构纵、横向均存在较大的位移差和应力差,导致变形不协调和局部应力过大;结构位移、应力的计算值与实测值基本一致。该类桥梁施工时应调整摊铺工艺,降低摊铺温度效应。  相似文献   

15.
李靖 《交通科技》2012,(3):28-31
为研究温度效应对大跨度混凝土结构受力的影响,结合某铁路特大桥实际工程,建立了混凝土箱梁的热-结构耦合分析三维有限元模型,分析了在温度场作用下混凝土箱梁的应力分布规律以及温度场变化对横向分析结果带来的影响.  相似文献   

16.
基于统计分析的混凝土箱梁温差标准值研究   总被引:3,自引:0,他引:3  
为了确定混凝土箱梁内部最不利正温差和反温差的大小,对处于施工阶段的某混凝土连续箱梁桥进行了为期1年的温度效应观测.在实际温度观测数据的基础上,采用统计分析中假设检验和参教分析的方法对混凝土箱梁温差标准值进行了分析,进而计算出混凝土箱梁正温差和反温差相应的标准值.结果表明,混凝土箱梁正温差和反温差服从不同的Weibull概率分布;混凝土箱梁正温差标准值为24.8℃,反温差标准值为-10.9℃.  相似文献   

17.
混凝土水化热是引起箱梁产生早期裂缝的主要因素之一。本文对江市特大桥19#墩右幅0#块箱梁混凝土水化热温度场进行了现场实测,并用Midas/Civil软件建立有限元模型进行了仿真分析,计算值和实测值吻合良好。基于实测和分析结果对内外温差控制、混凝土配合比设计及早期开裂控制提出若干建议,对箱梁开裂控制工作具有指导性意义。  相似文献   

18.
广东虎门辅航道连续刚构桥混凝土箱梁的温度梯度研究   总被引:9,自引:0,他引:9  
根据广东虎门辅航道连续刚构桥混凝土箱梁日照作用下的温度观测结果,研究箱梁沿断面高度方向的温度梯度分布规律。在参考国内外相关规范基础上,采用非线性回归方法提出该桥混凝土箱梁的温度梯度模式。利用空间有限元计算手段,针对箱梁的变形和应力对温度梯度模式的敏感性进行对比分析。研究结果表明,温度梯度模式对结构性能的影响很大。依据该桥温度观测数据提出的温度梯度计算模式可作为连续刚构桥混凝土箱梁日照温差作用下结构计算的重要参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号