首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
形成驾驶疲劳的理论分析与系统建模   总被引:2,自引:1,他引:2  
依据中西医学对疲劳的解释,在驾驶疲劳形成的过程中,我们把人-车-环境看作一个大系统,分析了形成驾驶疲劳的内外因素,并把这些因素引起的疲劳区分为精神疲劳和体力疲劳,进而建立起体力疲劳和精神疲劳系统模型。  相似文献   

2.
疲劳损伤是沥青路面技术体系中的一个重要问题,各种设计方法中都建立了相应的疲劳设计模型。为研究全寿命周期内沥青路面的疲劳演化行为,基于RIOHTrack足尺环道开展了6 000万次加载试验,获得了19种不同结构形式的疲劳损伤状态,研究提出了沥青路面的双向疲劳损伤模式,即:在行车荷载作用下,沥青路面同时产生自上而下和自下而上的疲劳损伤。其中:自上而下的疲劳损伤是由压剪荷载造成的,根据路面结构形式的不同,一般表现为T-D横向疲劳裂缝与车辙变形的对偶式损伤;自下而上的疲劳损伤是由整体性材料结构层的层底弯拉荷载引起的,是一种传统的疲劳损伤模式。需要指出的是,单一某个结构层的弯拉疲劳破坏并不会导致整体结构的破坏,即某一结构层的疲劳寿命并不等于整体结构的疲劳寿命。针对自下而上的疲劳损伤模式,提出疲劳寿命逐层累积的分析方法,以完善沥青路面弯拉疲劳寿命的评估。  相似文献   

3.
对复合材料发动机机体的弯曲疲劳进行了试验研究,探讨了玻璃纤维增强酚醛树脂机体材料的疲劳损伤,以刚度下降为设计准则来描述疲劳损伤参数及预测寿命,对疲劳断口进行了SEM观察,确定疲劳断裂破坏机理,为复合材料发动机机体的设计奠定了基础。  相似文献   

4.
李辛 《重发科技》2002,(2):22-25
本文对疲劳理论及其部分概念做了简单介绍,结合康明斯发动机高强度螺栓疲劳试验的实际情况对螺栓的疲劳试验过程进行了详细描述,并对我公司需要进行疲劳试验的螺栓进行了汇总,将其疲劳试验载荷附于文后,供技术人员参考。  相似文献   

5.
沥青混合料疲劳响应新模型研究   总被引:7,自引:1,他引:7  
本文分析了沥青混合料现有一些疲劳方程,通过3种沥青混合料,62根梁的疲劳试验,详细分析了应变控制下,能耗与荷载作用次数的关系,建立了能耗方程以及总能耗与疲劳寿命方程,由此得到沥青混合料的疲劳响应新模型,这种疲劳方程既能反映沥青混合料弹性特性和粘性性质,还能较准确地反映能耗过程,更符合沥青混合料的疲劳规律。  相似文献   

6.
杨美良  李波  张建仁 《公路交通科技》2007,24(12):66-68,103
鉴于我国《公路斜拉桥设计规范》未对部分斜拉桥拉索的允许应力值作具体规定,因此,为定量地研究车辆荷载作用下部分斜拉桥拉索的疲劳可靠度,在分析斜拉索应力时程的基础上,依据等效疲劳损伤原理,对车辆荷载作用下部分斜拉桥拉索疲劳可靠度进行了研究。通过假定结构疲劳寿命服从威布尔分布,推导出了疲劳可靠度公式和疲劳可靠指标β值,得到了运营车辆组成的模型车辆荷载频值谱,并以某部分斜拉桥为实例进行了验证。结果表明,部分斜拉桥设计中,拉索强度允许应力值是合理的,不会对拉索产生疲劳破坏,因此,可供其他桥梁疲劳设计或疲劳损伤验算时参考。  相似文献   

7.
疲劳分析在汽车零部件设计中的应用   总被引:2,自引:0,他引:2  
本文应用有限元疲劳分析软件NSC/FATIGUE,结合疲劳台架试验,对汽车安全零件-控制臂进行了疲劳分析,探讨了疲劳强度理论在汽车产品疲劳寿命计算中的应用,提出了提高零部件疲劳强度的方法。  相似文献   

8.
腐蚀和疲劳开裂严重危害在役钢桥服役安全,随机腐蚀作用导致疲劳抗力发生概率性劣化,结构面临的不确定性风险进一步增加。为准确评估随机腐蚀作用下在役钢桥的疲劳抗力及其演化特性,基于广义概率密度演化理论,建立了腐蚀-疲劳抗力概率密度演化方程。根据齐次马尔可夫过程和实桥腐蚀深度统计数据,确定了腐蚀深度概率密度函数的理论预测模型。基于腐蚀试件疲劳试验结果,确定了腐蚀深度和疲劳抗力的相关关系。在此基础上,针对一座典型在役钢桥疲劳抗力开展了概率密度演化分析,确定了随机腐蚀作用下在役钢桥疲劳抗力的概率密度函数及其演化特征,并采用蒙特卡洛抽样方法验证了结果的正确性。研究结果表明:疲劳抗力的概率密度函数分布特征与其自身方程密切相关,相同腐蚀作用下不同循环次数对应的疲劳强度概率密度函数存在显著差异;随着服役时间的增加,疲劳抗力的概率密度函数进一步发生演化,由腐蚀-疲劳抗力方程所决定,疲劳抗力概率密度等值线逐渐密集,概率密度峰值不断提高,随机腐蚀作用对于疲劳抗力的劣化效应越发集中;随机腐蚀作用下,在役钢桥的疲劳抗力呈现概率性劣化,服役时间为100年时,在95%保证率下,200万次对应疲劳强度仅为47 MPa,相...  相似文献   

9.
汽车车轮失效判据的研究   总被引:1,自引:0,他引:1  
在汽车车轮弯曲疲劳试验中,失效判据的确定对疲劳失效的自动识别具有重要的意义,本文针对东风汽车公司车轮厂试验中心的Ⅲ311-1型汽车车轮弯曲疲劳试验机,以试验数据为基础,提出了以试验的转速变化率为依据的汽车车轮疲劳失效判据,为自动识别车轮弯曲疲劳失效奠定了基础。  相似文献   

10.
疲劳驾驶是影响安全行车的原因之一。本文就疲劳的特性,疲劳驾车与道路交通安全的关系,产生驾驶疲劳的原因以及预防疲劳的措施作了简要介绍。  相似文献   

11.
为了深刻认识高疲劳抗力钢桥面板的疲劳特性,准确评估其结构体系的疲劳抗力,基于等效结构应力建立了考虑焊接微裂纹对钢桥面板疲劳性能劣化效应的结构体系疲劳抗力评估方法,并通过疲劳试验对所建立的评估方法进行了验证。在此基础上采用所建立的结构体系疲劳抗力评估方法对高疲劳抗力钢桥面板的疲劳开裂模式、疲劳抗力及其影响因素等相关关键问题进行系统研究。研究结果表明:焊接微裂纹的存在会显著降低钢桥面板的疲劳性能,导致主导疲劳开裂模式发生迁移;结构体系设计参数对纵肋与顶板双面焊构造细节和纵肋与横隔板新型交叉构造细节疲劳性能的影响有显著区别,其中纵肋与顶板双面焊构造细节的疲劳性能主要对顶板厚度的变化较为敏感,其疲劳性能随着顶板厚度的增加而显著提升,而纵肋与横隔板新型交叉构造细节的疲劳性能同时受多个参数的影响,其疲劳性能随着顶板厚度、横隔板厚度和纵肋高度的增大而提升,随着横隔板间距和纵肋底板与横隔板之间焊缝长度的增大而降低;传统钢桥面板的主导疲劳开裂模式为纵肋腹板与横隔板交叉构造细节围焊焊趾开裂,高疲劳抗力钢桥面板的主导疲劳开裂模式为纵肋底板与横隔板交叉构造细节纵肋焊趾开裂;相对于传统正交异性钢桥面板,高疲劳抗力钢桥面板结构实现了主导疲劳开裂模式的迁移,疲劳性能显著提高。  相似文献   

12.
腐蚀与疲劳是影响斜拉桥钢箱梁服役可靠性的关键因素,为研究两者双重作用下斜拉桥钢箱梁服役期可靠度的衰退规律,开展了基于神经网络技术的斜拉桥钢箱梁局部连接细节腐蚀疲劳可靠度分析。首先,通过疲劳强度与钢材强度的关系以及腐蚀引起的钢材抗力衰变,得到了钢材腐蚀疲劳抗力时变模型。然后,通过基于均匀设计法的神经网络技术和非线性有限元方法进行斜拉桥钢箱梁腐蚀疲劳时变可靠度分析。采用均匀设计法得到影响结构可靠性的基本随机变量的设计样本点,基于ANSYS求解样本点处疲劳荷载作用下的钢箱梁应力幅,通过神经网络得到钢箱梁构件的应力幅函数显式表达式。在建立腐蚀疲劳抗力和疲劳荷载效应时变模型的基础上,构建了斜拉桥钢箱梁局部连接细节腐蚀疲劳时变可靠度的显式功能函数,基于FERUM程序采用JC法计算斜拉桥钢箱梁腐蚀疲劳时变可靠指标。最后以苏通大桥为例,采用所提方法对钢箱梁局部连接细节服役期的腐蚀疲劳时变可靠度进行了计算,并进行了参数敏感性分析。结果表明:桥面板和U肋腐蚀疲劳可靠指标均随时间增加而减小,但桥面板腐蚀疲劳可靠指标衰退越来越快,而U肋腐蚀疲劳可靠指标则衰退越来越慢,桥面板腐蚀疲劳寿命不足100年。研究结果为斜拉桥钢箱梁服役期的运营维护提供了指导。  相似文献   

13.
正交异性钢桥面板疲劳开裂问题突出,其中纵肋与顶板传统单面焊构造细节疲劳开裂危害严重,为提升其疲劳性能,通过引入最新自动化焊接技术发展了纵肋与顶板新型双面焊构造细节。为明确其疲劳性能的关键问题,基于等效结构应力法进行了研究:首先对纵肋与顶板新型双面焊构造细节各疲劳失效模式的等效结构应力影响面进行深入分析,确定了构造细节的主导疲劳失效模式;在此基础上,研究了熔透率和焊缝几何尺寸对其疲劳性能的影响。研究结果表明:在纵向移动轮载作用下,纵肋与顶板新型双面焊构造细节的主导疲劳失效模式为顶板外侧焊趾起裂并沿顶板厚度方向扩展;对于该主导疲劳失效模式和焊趾起裂各疲劳失效模式,熔透率的影响不显著;对焊根起裂各疲劳失效模式而言,熔透率是关键影响因素,随着熔透率的增加焊根起裂各疲劳失效模式的等效结构应力幅值呈降低趋势,当熔透率达到75%时,其等效结构应力幅值均处于较低水平,此时纵肋与顶板新型双面焊构造细节的疲劳性能主要由焊趾起裂的各疲劳失效模式所控制;焊脚尺寸是纵肋与顶板新型双面焊构造细节疲劳抗力的另一关键影响因素,适当增大焊脚尺寸可有效降低焊趾起裂疲劳失效模式的等效结构应力幅值,进而提升焊趾起裂疲劳失效模式的疲劳性能。  相似文献   

14.
汽车驾驶人的疲劳程度识别对于预防交通事故具有十分重要的意义。设计了实车驾驶实验,采集了20名汽车驾驶人在疲劳驾驶状态下的眼动特征参数,将汽车驾驶人的疲劳等级分为警觉、轻度疲劳、深度疲劳和嗜睡四个级别。利用主成分分析法(PCA)预处理了所采集的眼动特征数据,并利用支持向量机(SVM)算法建立了PCA-SVM疲劳检测模型。实验结果表明,该模型能够高精度地识别驾驶人的四种疲劳状态。  相似文献   

15.
横隔板弧形切口疲劳裂纹为正交异性钢桥面板的主要疲劳病害之一,为研究该细节的疲劳抗力与裂纹处治技术开展了正交异性钢桥面足尺模型疲劳试验,对横隔板光滑弧形切口、含人工缺陷弧形切口、以及CFRP单面加固含人工缺陷弧形切口的疲劳性能进行了比较研究;结合有限元方法对横隔板光滑弧形切口疲劳评估方法进行了探讨。结果表明:打磨光滑的横隔板弧形切口在标准疲劳车作用下的疲劳寿命超过5 000万次,基本不存在疲劳问题。车轮荷载横隔板弧形切口处存在显著的压应力集中,热残余应力和轮载应力幅的组合效应构成了弧形切口疲劳开裂的外部驱动力。此外,初始几何缺陷是该细节疲劳开裂的重要影响因素。光滑弧形切口的疲劳评估,可采用距切口自由边6 mm处横隔板表面的主应力作为该细节名义应力,其疲劳抗力高于AASHTO规范的疲劳等级A(CAFL为165 MPa)。外贴CFRP补强可有效阻止含缺陷弧形切口处疲劳裂纹的发展。若以裂纹长度6.5 mm作为损伤容限,单面粘贴CFRP加固含缺陷横隔板弧形切口的疲劳寿命为未加固切口的14.5倍以上;若采用双面CFRP加固寿命将提高更多,提高幅度有待进一步研究。  相似文献   

16.
黄雨华  毛志强 《汽车工程》1993,15(5):316-320,F003
本文针对一种新研制的高强度,高延伸率球墨铸铁材料进行了疲劳性能方面的试验研究。本文简略地介绍了测试疲劳性能的试验方法,通过使用升降法试验获得了材料的弯曲疲劳极限,证明该材料具有良好的疲劳性能,通过低周疲劳试验获得了应力-应变曲线和应变-寿命曲线,这些都是汽车有关零件疲劳设计和寿命预测重要的数据资料。  相似文献   

17.
为了保证前置前驱动变速器台架疲劳试验的结果与零部件在其服役载荷条件下的疲劳性能具有某种确定的相似性,因而能根据台架疲劳试验结果推断零部件的疲劳寿命,使定扭矩、定转速的台架疲劳寿命试验具有实际的意义,结合道路试验的结果,利用相似性原理,提出了前置前驱为速器台架疲劳寿命试验的方法。  相似文献   

18.
为研究硅藻土复配SBR改性沥青的疲劳性能,制备了连续级配和间断级配硅藻土复配SBR改性沥青混合料,对多种类型硅藻土复配SBR改性沥青混合料展开间接拉伸疲劳性能试验,得到不同类型沥青混合料在不同温度下的疲劳方程。研究表明:混合料的类型、试验温度、硅藻土及SBR均对沥青混合料的疲劳寿命有影响;相同温度及混合料类型条件下,间断级配的疲劳寿命高于连续级配;相同级配及沥青混合料条件下,5℃条件下的疲劳寿命高于25℃的疲劳寿命;相同温度及级配条件下,硅藻土、SBR均可提高基质沥青混合料的疲劳寿命,表现为疲劳方程的K值增大,n值减小,且硅藻土对疲劳方程系数的影响程度大于SBR,即硅藻土复配SBR改性沥青混合料疲劳寿命的提高主要取决于硅藻土。  相似文献   

19.
阐述了商用车疲劳预警系统的整体框架,对监控系统、人机交互界面和疲劳检测方法的研究现状进行了详细分析,指出未来监控系统需具备高稳定、短延迟、海量数据处理能力,将预警分为两个层次并分别定义人机交互的有效性,然后对4类疲劳检测方法进行分析,指出基于多特征信息融合的疲劳检测方法将是未来的主要研究方向。最后提出当前研究的难点,并从获取更多驾驶员信息、提取更多疲劳特征、减少对特定疲劳特征的依赖3个方面对商用车疲劳预警系统的研究进行了展望。  相似文献   

20.
针对沥青混合料疲劳耐久性设计参数的不确定性与不科学性问题,从疲劳试验方法及疲劳性能表征模型两方面对沥青混合料疲劳性能表征的发展现状、存在的问题进行了综述,并总结了其未来发展方向。沥青混合料疲劳性能主要通过室内外不同疲劳试验进行研究,不同试验方法所用沥青混合料试件的尺寸、形状,试件内部所处应力状态及试验条件皆各不相同,而沥青混合料是一种由沥青结合料与不同粒径矿料通过搅拌和碾压而成的多相、多组分、多尺度黏弹性混合料,其力学响应具有显著的时间、温度与应力状态相关性,不同试验方法所对应的加载速度、试验温度及应力状态存在较大的差异性,故其试验结果呈现出显著的不确定性,其疲劳性能表征模型参数也存在显著的差异性;此外,常用的室内材料疲劳试验方法大多为一维或二维应力状态下的疲劳试验,这与沥青路面结构实际服役过程中所处的三维应力状态不符;沥青混合料疲劳性能表征方程大多来源于一维应力状态下的疲劳试验结果,因此,用简单应力状态下的材料疲劳试验方法与性能表征模型难以客观表征三维应力状态下沥青路面结构的疲劳抗力,从而导致沥青路面疲劳耐久性设计存在较大的偏差。建议开发与沥青路面服役状态一致的三维应力状态下的疲劳试验方法,并建立三维应力状态下疲劳表征模型,以消除不同试验方法及试验条件对沥青混合料疲劳性能表征的影响,提高沥青混合料疲劳性能表征的有效性与完备性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号