首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
随着天津市轨道交通网络的不断完善,新建地铁车站中换乘地铁车站越来越多。基坑开挖深度越来越深,围护结构地下连续墙也越来越深。超深地连墙的施工质量尤其是地连墙的接缝质量是保证基坑降水和开挖安全的重要环节。该文以天津地铁6号线为依托,在总结超深地连墙施工过程中出现的问题的基础上对关键技术提出了改进的方法。其成果对类似超深地连墙的施工具有指导和借鉴意义。  相似文献   

2.
依托杭州某地铁车站偏压深基坑工程,基于PLAXIS有限元软件建立三维数值计算模型,分析车辆动荷载对基坑开挖变形影响。结果表明:随基坑开挖深度增加,基坑内竖向位移和墙体水平位移均呈现先增大后减小趋势;工程施工时,在开挖至第三层土体时需加大注意坑底竖向位移变化,防止基坑隆起过大影响施工;车辆动荷载对基坑影响深度有限,基坑开挖深度小于15 m时,车辆动荷载对基坑影响较大,应注意车辆荷载对土体稳定性和地连墙水平位移问题,宜采取相关保护措施。  相似文献   

3.
刘蕾  尹亚坡 《隧道建设》2009,29(1):112-119
针对新建地铁车站下穿既有运营车站的工程特点,以控制沉降为核心,分别从管棚超前支护、开挖与初期支护、结构二次衬砌3个环节阐述宣武门车站下穿运营车站的沉降控制综合施工技术。大管棚施工采用国内先进的夯管工艺,配以袖阀式及分段后退式注浆技术措施;开挖前采用帷幕注浆,开挖、初期支护及二次衬砌期间采用全过程跟踪补偿注浆;开挖与初期支护期间采取加强措施改善平顶直墙结构的不利受力状态;二次衬砌创造性地采取分幅施作方案,以部分二衬结构代替支撑。通过实施一系列的技术措施,最终使既有运营车站的结构最大沉降仅为6.78mm,完全满足设计要求。  相似文献   

4.
天津地铁车站深基坑围护施工技术   总被引:2,自引:0,他引:2  
通过天津地铁某车站深度超过30m的基坑围护技术施工,说明其深基坑开挖技术在地铁车站的应用中能够保证安全,取得较好的施工效果。  相似文献   

5.
《公路》2021,66(10):130-134
深中通道伶仃洋大桥东锚碇为海中八字形地连墙锚碇,地连墙直径长107.1m,宽65m,地连墙厚度1.5m,基坑开挖深度42m,总开挖方量约22万m~3。锚碇基础采用逆作法,每开挖4m施工3m内衬,内衬均为吊模施工,施工风险高,施工功效低。采用理正、Flac3d、Abaqus软件对基坑开挖全过程进行对比分析,得到施工过程中地连墙最大深层水平位移分别为20.15mm、12.03mm、10.0mm,均小于设计值(25mm),其三维模型计算结果与实际监控结果(10.3mm)较接近。同时,采用"出土门架+伸缩臂挖机"复合式出土工艺,日均出土量超过2 000m~3,确保了基坑开挖过程中的结构安全和施工功效。  相似文献   

6.
唐鹏  王海龙  黄旭 《隧道建设》2011,(Z2):223-228
重庆轨道交通六号线一期冉家坝车站开挖深度约41 m,主体全长227.4 m,宽29.46 m,为地下5层局部6层岛式明挖车站。车站设计工程量大,施工风险高,质量要求高。以工程结构设计和施工方案为依托,以重庆轨道交通六号线一期冉家坝车站主体结构高大模板施工为例,通过研究地铁车站结构成型施工主要特征及施工影响因素,提出对应的施工方案及技术解决措施,确保了车站结构质量和外观质量。  相似文献   

7.
基于FLAC3D的高速公路高边坡合理开挖施工工艺研究   总被引:1,自引:0,他引:1  
为了合理的确定实例边坡开挖施工工艺,分别设定不同开挖级数和开挖深度工况,采用FLAC3D软件对该边坡在不同开挖工况下的变形情况和安全系数进行数值模拟,得到:①边坡的安全系数在每一级开挖过程中逐渐减小,因此要尽量减少对边坡的扰动;②边坡每级开挖深度为15 m时边坡的稳定性最好,开挖深度过小会对原始边坡形成持续扰动,而过大则容易形成剪切破坏贯通区,2种情况都不利于该边坡的稳定。  相似文献   

8.
董子龙  隆卫 《隧道建设》2013,33(6):489-498
大连地铁一期工程203标段兴工街站开挖断面为343.8 m2,洞顶埋深7.1~11.1 m,采用暗挖顺作法施工。为有效控制地表、地下管线及周边建筑物等变形或沉降,同时确保支护结构受力稳定,防止掌子面及隧道坍塌,采取在车站拱部全长范围设置超前大管棚+小导管,增加二次初期支护及纵梁,加强拱部支护结构刚度,形成拱盖,设置边墙锚索维护直墙稳定,并按照双侧壁导坑法分6部组织拱部开挖、台阶法分层分块组织中下部开挖,特别是中下部开挖采取竖向松动爆破拉中槽、边墙光面爆破跟进支护的方式,减小了对拱部支护体系稳定性的影响,全面确保了施工安全。  相似文献   

9.
软土地区地铁车站深基坑开挖卸载,坑底土体回弹对地连墙产生向上的侧摩阻力,使地连墙产生竖向位移。在不考虑墙体自重和下卧层起伏的条件下,依据残余应力法和Boussinesq解,推导出地连墙竖向位移的计算公式。结合苏州地铁3号线星港街站基坑开挖的土层参数与监测数据,利用Midas GTS有限元软件建立三维数值模型对比分析,探究深基坑开挖卸荷作用对围护结构变形特性的影响规律。研究发现:理论计算公式符合工程实际情况,具有应用价值;地连墙竖向位移量随着基坑开挖深度的增大而增大,最大隆起(0.06%~0.09%)H,其中开挖第4层土体时,地连墙隆起速度最大;建议在软土地区深基坑支护结构设计时考虑到卸荷效应。  相似文献   

10.
为了分析深基坑与地铁车站共用地下连续墙影响下车站和隧道连接节点的变形特性,保护地铁线路运营的整体安全,通过现场测试和数值模拟展开研究。根据上海地区深基坑与地铁车站共用地下连续墙工程实例的现场测试数据,分析了开挖施工过程中车站与地铁盾构隧道的竖向位移分布特征,并采用三维数值模型研究了共用地下连续墙深基坑开挖深度、相对位置对车站与隧道节点变形的影响,探讨了车站与隧道节点的曲率半径、相对弯曲的发展变化规律,并判断其安全状态。测试结果与数值分析均表明,车站与隧道节点变形比隧道最大沉降处更加不利;节点的曲率半径随基坑开挖深度的增加而减小,相对弯曲随基坑开挖深度的增加而增加;基坑与车站完全共用地下连续墙或远离隧道时,节点处的曲率半径相对较大。  相似文献   

11.
叶可炯 《城市道桥与防洪》2022,(10):154-157,165
超深地下连续墙变形所导致的接缝渗漏问题是上海软土地区超深基坑施工所遇到的典型难题之一。本课题结合上海北横通道某深基坑工程,运用Plaxis 3D 有限元软件通过计算分析基坑开挖过程不同工况下的地下连续墙的变形规律,以及基坑开挖过程中地墙变形与地下墙接缝张开渗漏的关系。结果表明:(1)当基坑开挖深度大于12m或20m两个临界点时侧向位移增长速度显著。地下连续墙的最大水平位移发生在基坑边的中点附近,向两侧逐步减小,这主要是基坑角部空间效应引起的。(2)地下墙接缝张开渗漏的危险点并不是发生在基坑中点最大侧向变形处,而是基坑边中部与角部之间、靠角部较近的位置。(3)即使对于较小尺寸的超深基坑,当开挖深度较大时,长边位移仍较短边位移有明显增大。本文结论对超深基坑开挖地墙变形与地墙渗漏控制具有指导意义。  相似文献   

12.
通过对北方某城市地铁1号线一期工程地铁深基坑地表沉降监测数据进行统计分析,讨论地表沉降与基坑支护类型、开挖深度的关系。结果表明:地铁车站基坑开挖引起的地表变形最终表现为“凹槽形”;地铁车站基坑地表最大沉降变形量为0.01% H~0.05% H,平均值为0.03% H;地铁车站基坑开挖引起的地表沉降值大多位于0~5 mm,小于控制值;在其他条件(基坑长度、宽度、周边环境)大致相同的前提下,地表沉降值随开挖深度的增大而增大,随支撑刚度的加大而减小。  相似文献   

13.
以南京地铁7号线在建永初路站旁某新建基坑开挖为工程背景,根据该工程的施工方案和地质情况,采用MIDAS GTS-NX软件构建三维有限元模型,通过对基坑开挖过程中在建地铁车站变形的模拟,得到车站水平位移、竖向位移、侧墙弯矩和周边地层竖向位移的分布规律;通过将基坑开挖过程中控制点的变形值与实际监测数据进行对比,得出采用现有施工方案,基坑开挖过程中在建地铁车站关键控制点的变形均满足规范要求,并在此基础上提出了减小基坑开挖和地铁施工之间交互干扰的措施。  相似文献   

14.
李养平 《隧道建设》2009,29(6):605-607,618
天津地铁既有线改扩建工程车站出入口基坑开挖深度为6-7m,加上基坑处闹市区、距离建筑物非常近,且坑边管线多,为适应工程场地条件并节约造价,围护结构采用了在水泥土搅拌桩受拉区插入地铁旧钢轨所形成的劲性水泥土搅拌桩连续墙,论文主要介绍钢轨劲性水泥土搅拌桩连续墙施工工艺、钢轨水泥土组合墙工作性能和钢轨起拔的试验情况,试验得出的结论直接指导了其在工程中的安全应用,对类似工程具有一定的指导与借鉴作用。  相似文献   

15.
奚家港大桥主墩基坑位于奚家港一线海塘大堤两侧,距海塘大堤防汛墙最小距离为10.7m,最大开挖深度6.74m。海塘大堤与基坑开挖顶面高差为3.3m,海塘大堤上为通行道路,重载车辆较多。奚家巷大桥主墩基坑支护结构设计需要综合考虑坑外恒荷载、堤顶动载、不良地质条件、施工进度等因素,保证基坑变形、海塘大堤结构变形满足规范要求,确保施工安全,满足施工工期要求。  相似文献   

16.
为了更加安全经济地进行土岩复合地层中基坑工程设计,针对上土下岩复合地层中吊脚桩基坑支护结构的受力及变形特性进行研究。采用二维数值分析方法,建立土岩复合地层条件下吊脚桩支护基坑开挖模型,分别分析基坑开挖过程中吊脚桩支护结构内力、变形的发展过程,以及土岩弹性模量比RE、吊脚桩嵌岩深度t、岩肩宽度b与桩体受力、变形之间的相关关系。结果表明: 1)随着基坑开挖深度逐渐增大,桩身侧移增大且桩身最大侧移发生位置逐渐下移,最大下移幅度为土层厚度的17.5%; 2)当基坑开挖至土岩交界面时,吊脚桩桩身内力达到最大值,下部岩层的开挖使得桩身最大负弯矩减小27.5%; 3)当岩层弹性模量介于600 MPa和4 800 MPa之间时,最优设计嵌岩深度为1.5 m,最优设计岩肩宽度为1.5~2.0 m。  相似文献   

17.
南湖路湘江隧道河东盾构工作井长25 m,北线开挖深度为19.446 m,南线开挖深度为23.828 m,南北线合并开挖总宽36.622 m,为超大、超深基坑工程。阐述了工作井设计思路及支护手段,通过对其围护结构进行受力计算及稳定性分析,证明支护参数合理可靠。  相似文献   

18.
为了给软土基坑工程开挖的支护设计与施工提供参考,针对软土基坑开挖中普遍存在的开挖深度以及空间效应,考虑分区开挖与挡墙加固等有利因素的影响,以上海市五坊园基坑工程为背景,进行开挖过程中基坑及周围环境动态响应的追踪研究。采用现场设点实测的方法对施工过程中围护结构位移、支撑轴力、立柱隆沉及邻近管线位移的变化规律进行监测,并将实测数据与类似条件的软土基坑开挖工程进行对比,分析施工过程中软土基坑自身结构及周边管线的变形特性,探究开挖深度与空间效应对不同位置基坑结构的影响。研究结果表明:基坑施工对围护墙体及周边环境的影响具有明显的空间效应和深度效应;浅层土体开挖时(2 m深度范围内),基坑侧移空间分布主要受开挖顺序、土层性质和基坑阳角等因素影响;深层开挖时,基坑侧移体现出明显的空间效应;第1道支撑主要受土层流变影响,轴力在第2道支撑拆除阶段达到最大;由于底板硬化作用,第2道支撑轴力在底板浇筑阶段先增大后减小;基坑开挖卸荷会导致围护墙和立柱桩产生向上的位移,由于更加靠近基坑中心,立柱隆起值大于围护墙隆起值;基坑开挖深度越深,附近地下管线的沉降速率越大。  相似文献   

19.
采用离心模拟试验对非对称异形基坑的开挖过程进行了模拟,应用停机开挖方式,分三步进行了开挖。根据左墙与中墙的间距L分别设置了三种不同的工况L为30,18,6 m,并进行了对比分析,研究左墙与中墙的距离对中墙的变形特性影响以及墙后的土压力分布规律。结果表明:随着左墙与中墙距离L的减小,开挖完成后中墙外侧的土压力逐渐增大,中墙顶部的左侧水平位移逐渐减小;上部悬臂下部内支撑开挖的坑中坑与普通基坑围护结构变形特性不同。  相似文献   

20.
<正>2015年10月29日,武汉杨泗港长江大桥南锚碇地连墙首幅钢筋笼顺利入槽。10月30日,位于汉阳侧的大桥北锚碇第一根水泥搅拌桩也顺利完成。至此杨泗港大桥2个锚碇基础进入全面施工阶段。大桥南锚碇地连墙首幅钢筋笼长达65.25m、重120t,采用2台履带吊机缓缓放入预先开挖好的槽段(见图1)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号