首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为研究风荷载下多线铁路桥双车交会的动力响应,以某六线双层铁路斜拉桥为背景,采用桥梁结构分析软件BANSYS建立有限元模型,对不同双车交会组合进行风-车-桥系统耦合振动分析,计算各工况下车辆和桥梁的动力响应,并研究双车交会横桥向间距、车桥相对位置和风速对车辆和桥梁动力响应的影响。结果表明:双车交会过程中,迎风侧车辆的加速度变化不明显,背风侧车辆的加速度明显变大;双车横桥向间距对背风侧车辆的横向加速度有不同程度的影响,竖向加速度有明显突变;横桥向间距对桥梁的横向位移略有影响,对竖向位移几乎无影响;双车横桥向间距相同时,靠近来流方向车道交会时车辆加速度比远离来流方向车道交会时大;迎风侧车辆的加速度随风速增大而增大;桥梁跨中横向位移随风速增大而变大,竖向位移和扭转角受风速的影响较小。  相似文献   

2.
周莉  唐志 《交通科技》2023,(3):39-42+49
为研究山区大跨径钢桁梁悬索桥的桥位地形风场特性,确定基准风速,以开州湖特大桥为依托,采用CFD数值模拟,通过8种工况的计算分析,研究大桥桥址区的风参数,得出桥址区的风场特性分布。结果表明,不同工况下,主梁高度处的各向风速及风攻角有较大差异;CFD数值模拟得到的主梁基准风速较依据规范确定的基准风速小;综合考虑桥址区的风场特性,本桥桥面处的基准风速为38.5 m/s。  相似文献   

3.
现阶段山区公路混凝土单箱梁、平行箱梁的风障设置研究存在不足。本研究采用计算流体力学(CFD)中的三维大涡模拟(LES)方法,针对不同风障布置形式下的混凝土单箱梁、不等间距平行箱梁的桥面风环境进行了研究,建立了有限体积模型。研究了来风上下游侧风障对单箱梁桥面风环境的影响,发现在单箱梁来风上游侧布置的风障能够显著降低桥面风速,而在来风下游侧布置的风障则无法起到有效的挡风作用。因此,当平行箱梁间距过大时,来风下游侧的箱梁由于缺乏上游侧风障的保护,桥面风环境恶化。针对这一问题,研究了平行箱梁内侧未加装风障时的桥面风环境,计算了车道平均风速和风速折减系数。研究发现,下游侧箱梁桥面平均风速随着平行箱梁间距的增大而增大;当间距增大到一定程度后,下游侧箱梁由于进入了上游侧箱梁尾流的充分发展区,造成下游侧箱梁桥面平均风速增高、风场紊乱。进一步研究了平行箱梁内侧加装风障后的桥面风环境,发现下风侧箱梁桥面平均风速大幅减小,上游侧梁的尾流涡对下游侧箱梁桥面风环境造成的不利影响也受到了有效的抑制。综上所述,单箱梁下风侧安装的风障不能改善桥面风环境、当平行箱梁间距超过2倍梁宽时,应在平行箱梁内侧加装风障。  相似文献   

4.
为探明高铁连续梁桥龙卷风荷载特征,采用计算流体动力学手段,开展了高铁连续梁桥龙卷风荷载数值模拟研究。首先,以Ward型龙卷风发生装置为物理原型,按照原理相仿和等效替代的原则建立了相应的数值模型。然后,基于上述模型开展龙卷风场数值模拟,并与文献提供的风洞试验结果进行对比,验证了数值龙卷风场的准确性。在此基础上,以某大跨度高铁连续梁桥为工程背景,将该桥三维模型建于上述数值龙卷风场中心,研究龙卷风作用下高铁连续梁桥结构表面风压的分布规律。研究结果表明:数值模型可较好地模拟龙卷风场的基本特征;龙卷风袭击高铁连续梁桥时,风场受主梁和桥墩的干扰较大,涡核结构发生明显变化,其中,主梁底部风场的涡核半径增大,形成较大范围的高风速区;桥梁结构表面存在较大压差,正负风压极值之差约为负风压极值的2.5倍;负风压出现在主梁跨中的较小范围内,且主梁顶面的负压绝对值高于主梁侧面和底面;正风压极值出现在主梁端部迎风侧,且桥墩迎风侧也承受较高的正风压作用。上述极端不均衡的风荷载在桥梁设计时应予以重视。  相似文献   

5.
在较大的侧风作用下汽车行驶在桥面时易发生行驶偏向问题,尤其在桥塔区域,风速的剧烈变化极易导致车辆事故。本文以虎门二桥工程中的泥洲水道大跨悬索桥为背景,通过风致车辆侧偏动力响应分析和风致侧偏响应评价标准,建立了不同车速条件下代表车型的车辆侧偏安全临界风速;采用虚拟风洞针对主桥、引桥二维绕流及桥塔区桥面的三维绕流进行了模拟,提取了表征桥面风环境的风速影响系数,对设置风障前后情况的对比分析,证明了风障的有效性;通过风致侧偏安全评估给出了代表车型不同车速下的安全行车临界风速,通过风障结构措施和交通管理措施的结合,可使运营期桥面通行安全风速达到9级及以上,并建议了大桥风雨天运营安全控制标准,研究成果可为类似工程借鉴和参考。  相似文献   

6.
李响  高晖  吴燕青  屈磊  王松江  林达明 《公路》2021,66(12):381-384
目前针对路堑受风雪流影响的研究主要集中在深度≤10m的路堑.而在一些山区修建高速公路时,由于自然地形的限制,有些路堑深度达到几十m,且两侧深度不一致.针对这种形式的路堑对风雪流的影响研究很少.以乌尉高速的路堑设计方案为研究对象,运用ANSYS Fluent软件对设计方案中的3类典型路堑在冬季最大瞬时风速条件下进行风吹雪数值模拟.结果 表明,在冬季最大瞬时风速下,雪粒能顺利通过迎风侧深度为10 m、背风侧深度为30 m与迎风侧深度为20 m、背风侧深度为10 m这两种路堑,相比之下后者路面上雪粒的速度更高、流通性更好;而迎风侧深度为40 m、背风侧深度为10m的路堑内,则会有大量雪粒堆积.  相似文献   

7.
为研究深切峡谷地形条件下的桥面局部风场,对桥梁跨中和过桥塔区局部区域风环境开展了现场实测。对局部风场特征进行了讨论分析,其中包括平均风速特征、紊流度、脉动风速功率谱和极值风速分布等。探讨了跨中和桥塔区位置风剖面分布,同时给出了跨中和桥塔区的平均风速拟合关系,量化了过桥塔区顺桥向风速分布的桥塔遮挡效应和地形加速效应,总结提出了一种典型的过桥塔区顺桥向风速曲线模型。此外,桥塔区域风速紊流度显著大于跨中位置,表明桥塔和特殊地形对局部风场存在较大影响。桥塔区脉动风速实测谱高频段能量明显上升,与惯性子区谱-5/3斜率衰减效应变化特征不符。相较于规范风谱,推荐了3阶双对数多项式,可更加准确地表征脉动风湍流能量在频域上的分布特征。对瞬态阵风极值风速的分析结果表明,相较于平均风速,极值风速用于评估行车安全更为合理。  相似文献   

8.
将处于自然风中一前一后并列布置的大跨度桥梁相互之间可能存在的不确定相互气动干扰处理成随机气动干扰,并归入到紊流风随机激励中,采用基于模态参数识别的随机子空间识别方法,开发了桥梁断面颤振导数识别的专用程序,并以具有理论解的Theodorsen平板为例,通过系统响应数值仿真和颤振导数识别,验证了该方法的可靠性。针对实际大跨度桥梁,设计了并列节段模型试验悬挂系统,开展了紊流风和随机气动干扰效应下的并列大跨度桥梁节段模型风洞试验,将迎风、背风侧桥梁断面的颤振导数结果与均匀流、紊流风中单个桥梁断面颤振导数值进行了对比。结果表明:背风侧桥梁对迎风侧桥梁的颤振导数影响很小,而迎风侧桥梁对背风侧桥梁的颤振导数有较大影响;该研究方法为存在这种随机气动干扰的并列大跨度桥梁颤振导数识别提供了一个较为合理的途径。  相似文献   

9.
采用风速概率密度函数和风向频度的乘积表示联合概率密度函数,用极大似然法和概率曲线相关系数法相结合的逐步迭代估计法估计杭州湾跨海大桥桥位处桥面高度各风向的有效最优概率分布类型及参数;利用已建立的风-汽车-桥梁系统安全性分析框架计算得到各个方向下车辆发生事故的临界风速;为了确定桥面局部风环境的状况,在同济大学TJ-3风洞中进行了杭州湾跨海大桥桥面风环境风洞试验研究,并引入等效桥面风速和影响系数以考虑桥梁结构绕流和附属构造物对行车高度处风速的影响;最后,对杭州湾跨海大桥的行车安全进行了基于风速风向的概率性分析,并研究了增设风障对行车安全的影响。结果表明:增设风障是一种非常有效的提高安全行车概率的方法;杭州湾跨海大桥全桥采用70%透风率的风障完全可以满足车辆安全行驶的要求。  相似文献   

10.
陈莹  姚成 《公路》2009,(10)
我国没有声屏障结构设计规范,更很少考虑设置声屏障对桥梁结构的力学影响.本文将其影响分为三种:桥面板的横向弯矩、主梁扭矩及独柱桥墩横向弯矩.建议声屏障结构设计基本风速重现期取50年,风荷载应考虑活载风与极限风两种情况,重要性系数取1.0.有限元分析结果表明,在风速较大、声屏障较高及桥墩较高时,桥梁段声屏障设计必须考虑其对桥梁结构的影响.  相似文献   

11.
采用数值风洞的方法,对某斜拉桥桥塔区三维流场数值模拟,通过在无监控室、无风障、有风障三种情况下桥塔区行车高度风环境的研究,结果表明:无风障时,由于受到塔柱的影响,桥塔区域各车道风速影响系数变化剧烈,且桥塔附近增大效应明显;无监控室时,风速影响系数最大值变化不大,监控室对桥塔区行车风环境影响较小;在设置风障后,风速影响系数曲线变化趋缓,桥塔附近风速影响系数突变得到有效消除。设置风障能够有效保障大风环境下行车安全。  相似文献   

12.
为研究既有桥梁对近桥位复线桥的气动干扰,选取不同梁高典型断面,采用增强壁面处理(EWT)的数值模拟方法,对比研究了主梁断面高度、来流风攻角及风向等因素对错列双钝体断面间的气动特性影响,并对其流场结构进行了分析.研究结果表明:受既有桥梁影响,复线桥主梁断面在位于迎风向和背风向时,三分力系数与单幅断面差异显著.对于不同梁高情况,复线桥监测断面位于背风向时,迎风侧腹板负压区随遮挡面积的增大而增大,扭转效应更为明显,升力方向随梁高变化发生改变;对于不同来流攻角情况,背风向监测断面在负攻角下所受阻力较对应正攻角略大,攻角增大引起了断面间大涡的破裂.断面形状、高度、遮挡面积及来流攻角均在不同程度上引起绕流特性的改变.  相似文献   

13.
《公路》2020,(7)
采用Realizable k-ε湍流模型,研究了未设置风屏障和设置50%透风率风屏障两种工况下的圆环形桥塔区域行车风环境特点。研究结果表明:桥塔周围存在明显的加速区域,最大风速系数可达1.3,使得车辆通过桥塔区域时将经历剧烈的风速变化,可能影响行车安全。设置50%透风率风屏障以后,桥塔周围未出现明显的加速区域,桥面风速变化较小,有效改善了圆环形桥塔区行车风环境。  相似文献   

14.
为研究山区峡谷地形下非均匀风场对大跨度桥梁静风稳定性的影响,以一座跨越典型山区峡谷地形的大跨度斜拉桥为工程背景,首先,采用计算流体动力学(CFD)软件Fluent对桥址区地形的风场特性进行分析,计算出沿主梁方向的非均匀风速和非均匀风攻角分布;然后,采用ANSYS APDL技术实现能考虑非均匀风速和非均匀风攻角下大桥静风稳定性的非线性分析方法。在此基础上,综合考察非均匀风攻角分布、非均匀风速分布、非均匀风速非均匀风攻角分布等风场条件对大桥静风稳定性的影响,分析各工况下主梁的静风变形与跨中处拉索刚度变化。研究结果表明:与均匀风场条件下的静风响应不同,非均匀风攻角或非均匀风速下主梁静风响应最大值点位于风荷载峰值点与跨中之间,在针对非均匀风场下大桥的静风稳定性分析时,应更注重静风响应最大值点而不是跨中处;非均匀风攻角下大桥的静风失稳临界风速要远低于均匀风攻角的静风失稳临界风速,且其静风稳定性能主要受最大风攻角而不是主跨部分非均匀风攻角的平均值来控制;非均匀风速下大桥的静风失稳临界风速主要由主跨部分的风速平均值和最大值共同影响;主梁的竖向位移和扭转角形状主要由风攻角因素来控制,而横向位移的变化规律相对较独立,其形状基本上以跨中线对称,且其值主要由风速因素来决定。  相似文献   

15.
考虑车辆位置影响的风-车-桥系统耦合振动研究   总被引:1,自引:0,他引:1  
风-车-桥耦合振动系统中车辆位于桥道的气动绕流之中,车辆所受气动力与车辆位置密切相关。首先测试了车辆位置对车辆及桥道气动力的影响,建立了空间耦合的风-车-桥系统分析模型。以京沪高速铁路南京长江大桥为工程背景,采用自行研发的桥梁结构分析软件BAN-SYS,对比分析了车辆位于桥道迎风侧和背风侧时风-车-桥系统的耦合振动情况。分析结果表明,风-车-桥系统耦合振动分析中考虑车辆位置的影响是必要的。  相似文献   

16.
针对湖南郴州赤石大桥桥位的风特性进行了现场实测,统计了观测器内大风天数与风向情况,对大风时段沿桥轴向各测点的风速、风向、风攻角及紊流度等风特性参数进行了分析。结果表明:观测期间桥位处存在瞬时突变风现象;受地形影响,风向以南北向为主,且大风时段风向为南风,风攻角变化较小;沿桥轴向个测点的平均风速、风向、风攻角变化基本一致。  相似文献   

17.
为探究横风作用下钢桁梁桥上列车双车交会过程中气动力系数的突变机理,以某一大跨度公铁两用钢桁梁桥为背景,首先根据XNJD-3风洞实验室的尺寸设计了一套移动车辆模型试验系统;然后根据风洞阻塞比的要求设计了几何缩尺比为1∶30的桥梁和车辆试验模型;最后测试了横风作用下桥上列车交会过程中移动车辆模型的气动力。为尽可能地降低试验系统对运动车辆气动力的干扰,对原始时程数据进行了低通滤波处理,并分析了车速、风速、合成风向角、车辆所在轨道位置等因素对车辆气动力系数的影响。试验结果表明:双车交会时,背风侧运动车辆的气动力系数具有明显的突变趋势,迎风侧运动车辆的气动力系数变化较为平稳;列车交会时突变区域主要受运动车辆引起的列车风速的影响,且随车速的增加而增大,横风风速对突变区域影响较小;交会过程中背风侧车辆升力系数和侧向力系数的突变量随合成风向角的增大呈增大趋势,力矩系数突变量对合成风向角的变化不敏感;横桥向列车所处轨道位置影响其气动力系数。试验结果可为研究横风作用下高速列车-桥上交会过程的行车安全提供数据支持。  相似文献   

18.
蹇宏 《公路》2022,(4):184-189
建立圆形、圆端形、矩形和尖端形桥墩绕流数值计算模型,获得了不同桥墩形状绕流流线、涡量与压力分布规律,分析了桥墩形状对绕流横向流速的影响。结果表明:圆形、矩形和尖端形桥墩绕流形成了卡门涡街,桥墩后侧周期性地脱落涡体,且绕流横向速度呈周期性正负交替分布;矩形桥墩绕流流线弯曲程度、涡体尺寸、高压-低压区域面积等最大,横向流速变化复杂且峰值最高(0.269 m/s);圆端形桥墩绕流流动规律简单,流线弯曲度小,无明显涡体脱落,且横向脉动流速小。数值模拟结果综合表明,圆端形桥墩排导能力最好,对船舶行驶影响最小,而矩形桥墩影响最大。  相似文献   

19.
台风环境下的跨海长桥所处风场分布特性十分复杂,为提高台风期海中长桥桥面行车安全和运营管理服务水平,进行台风环境下大区域风场空间分布特性的研究是十分必要的。根据杭州湾跨海大桥桥位地区在台风"梅花"过境时的风速数据,对该桥线位风场空间分布特性进行了研究,发现该开阔平坦地区的风速变化趋势具有非常高的一致性,大风经过其路线上前后相距较远两点的时间长短会受到地形的影响,并可以采用统一的地面粗糙度通过指数率公式来描述该地区风速的竖向变化规律。  相似文献   

20.
为研究车辆在突变风荷载作用下的气动特性,以大客车为研究对象,采用计算流体力学CFD(computational Fluid Dynamics)数值模拟方法,对侧向风作用下车辆风荷载突变过程中车辆的气动力特性进行了研究。采用动网格技术实现了对车辆行驶出隧道及通过桥塔区域时车辆风荷载的突变过程的动态模拟,分析了车体表面压力分布及气动力系数变化规律,讨论了车速、风速、车辆所处车道位置对车辆气动力系数变化的影响。研究结果表明:车辆行驶出隧道及车辆穿过桥塔区域时隧道及桥塔遮风效应的影响区域变长,车辆的三分力系数均有较大的突变。车辆所受风荷载突变使车辆的安全稳定系数发生较大突变,对车辆的行车安全和舒适性带来较不利的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号