首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对目前悬索桥加劲梁气动翼板颤振主动控制数值计算方法的局限性,提出采用流固耦合方法对加劲梁上部气动翼板的颤振控制进行分析。通过对Fluent软件二次开发,建立加劲梁-气动翼板系统流固耦合数值仿真计算模型,分析桥梁的颤振性能。以大贝尔特东桥为背景,采用流固耦合方法分析加劲梁上部设置气动翼板前、后该桥的颤振临界风速,研究气动翼板角速度对颤振临界风速的影响。结果表明:该桥颤振临界风速的数值仿真计算结果(72.0~74.0m/s)和节段模型风洞试验结果(70.0~72.9m/s)吻合较好;加劲梁上部设置气动翼板后,当前气动翼板与加劲梁扭转方向相反、后气动翼板与加劲梁扭转方向相同时,能显著提高加劲梁颤振临界风速;加劲梁最大扭转角随气动翼板角速度的增大逐渐减小。  相似文献   

2.
为更准确研究大跨度桥梁的风致振动特性,为设计提供更可靠的方法,对考虑流固耦合作用的大跨度桥梁风振响应进行了研究。介绍了一种流固耦合分析的强耦合方法,同时求解流体控制方程和结构控制方程,计算出全场变量值。给出了与求解方法相应的湍流模型和边界条件。对大跨度悬索桥进行了风振响应分析和颤振分析,与已有文献进行了结果对比。研究表明:发生颤振时,考虑流固耦合作用时桥梁的颤振临界风速要小于不考虑流固耦合作用时的情况,其风振响应要大于不考虑耦合作用的风振响应,说明在气动弹失稳的情况下,流固耦合作用加深了结构的不稳定性。结果表明流固耦合效应对于大跨度悬索桥风振响应有重要影响,强耦合计算方法可以较准确地预测其风致振动特性。  相似文献   

3.
随着桥梁跨径的增加,其结构对风的敏感性增强,颤振稳定性往往成为桥梁设计中首要考虑的因素。桁架主梁构造复杂,也是抗风数值计算的难点。通过对FLUENT二次开发,建立了基于几何三维的竖弯和扭转流固耦合数值仿真计算模型,通过对黄冈公铁两用长江大桥进行颤振数值仿真计算,利用不同风速下主梁位移时程曲线判断颤振临界风速,并和节段模型风洞试验结果进行比较。计算表明,数值仿真计算结果和风洞试验结果基本吻合,说明本文流固耦合计算方法的有效性。  相似文献   

4.
提出一种估算扁平箱梁颤振临界风速的方法,分析了影响桥梁主梁断面颤振稳定性的参数,选定公式拟合数学的模型,利用诺模图和最小二乘原理初步拟合出计算公式,并用CFD数值模拟技术考虑扁平箱梁宽高比与斜腹板倾角对颤振临界风速的影响,并将宽高比对颤振临界风速的影响纳入计算公式,最后将计算公式应用于工程实例。结果表明计算误差在20%以下,为桥梁断面颤振稳定性方案比选和科研提供可靠的参考依据。  相似文献   

5.
通过风洞试验和数值模拟获得主动气动翼板优化控制参数需要庞大的试验和计算成本,并且难以得到最优的翼板控制参数。基于流线箱梁主动气动翼板颤振控制的风洞试验数据,以翼板与主梁扭转运动相位差为输入,颤振临界风速变化比例为输出建立BP人工神经网络模型,对神经网络进行训练得到了主动气动翼板颤振临界风速预测关系。结果表明:预测输出值和实际值之间误差为5%左右,相关系数为0.965;使用训练得到的人工神经网络模型以1°增量对0°~360°范围内的气动翼板相位差进行遍历计算,得到了两侧翼板相位差对主梁-翼板系统颤振性能的影响规律,当迎风侧翼板相位差位于180°~360°内时系统颤振性能得以提高,最优参数组合为迎风翼板相位差231°,背风侧翼板相位差63°;利用获得的最优气动翼板相位差参数组合,建立了主梁-翼板系统流固耦合模型,对试验和神经网络模型的最优参数的颤振控制效果进行验证,证明了神经网络对颤振控制预测的准确性。提出的通过数据量较少的试验数据训练构建人工神经网络模型,构建预测主梁-翼板系统颤振性能的理论框架,显著改善了颤振控制效果,实现了高精度主动气动翼板颤振的优化控制。  相似文献   

6.
为了研究一座1 400 m跨径流线型闭口箱梁断面斜拉桥的颤振性能,根据其风致静力失稳或颤振前主梁最大有效风攻角已接近±10°的特点,通过弹簧悬挂节段模型试验,开展了大攻角下桥梁颤振性能研究。试验发现,在4°~10°风攻角下,高风速时模型均出现了弯扭耦合程度较弱的自限幅非线性颤振现象;而在其他攻角下,高风速时模型则表现为常规的发散型弯扭耦合颤振。研究发现,经典的线性颤振理论无法适用于研究试验中大攻角下出现的非线性颤振现象。因此,采用了一种简化的非线性半经验数学模型来表示非线性颤振中的自激扭矩,并从试验模型颤振位移时程中识别得到了模型参数。基于这一非线性自激力模型,通过试验测得的位移信号来构造自激扭矩时程,再利用自激扭矩的做功时程来识别各个气动参数。之后,利用其中的部分气动参数构造气动阻尼,并基于结构阻尼系数与气动线性阻尼系数之和为零的判断条件,提出了一种针对非线性颤振现象的临界风速确定方法,同时将线性和非线性颤振的起振判断条件进行了很好的统一。研究结果表明,利用这一方法求得的颤振临界风速与风洞试验中出现的现象基本吻合。  相似文献   

7.
随着桥梁设计跨度增大,结构对风荷载作用极为敏感。采用CFD数值模拟方法研究桃花峪黄河大桥主梁断面颤振问题,根据分状态强迫振动法给出了颤振导数识别方法建立了数值计算模型,经计算得出结论:在+5°风攻角下造成竖向振幅为0.03 m所需风速约为13.2 m/s,在+3°风攻角下造成相同竖向振幅所需风速约为14.2 m/s;在+5°风攻角下造成扭转振幅为6°所需风速约为13.1 m/s,在+3°风攻角下造成相同扭转振幅为6°所需风速约为14.0 m/s,风攻角是颤振重要因素;经模拟气动流场得到主梁结构在0°、+3°及-3°攻角下颤振临界状态涡量变化情况可知随着风速增大涡量图为一对细长互不干涉正负涡量逐步增大至正负交替漩涡,在尾流处耦合成2个相互交替大漩涡。  相似文献   

8.
数值模拟桥梁断面气动导数和颤振临界风速   总被引:16,自引:2,他引:16  
从描述流体绕运动的刚性断面流动的N S方程出发,首先采用时间二阶Projection 2算法对控制方程作分裂步处理,得到的求解方程空间离散采用有限体积法,物面运动方式为自由度解耦的强迫振动,采用计算网格和刚性截面刚性连接、同步运动的动网格技术,数值模拟了振动的大带东桥绕流场,由计算的气动力按最小二乘法提取气动导数,最后计算了大带东桥的颤振临界风速。计算的大带东桥气动导数与风洞试验有很好的一致性,大带东桥颤振临界风速模拟值与风洞试验结果偏差很小,证明了本文数值方法的正确性和工程适用性。  相似文献   

9.
用结构动力学理论,建立了车辆过桥时车桥耦合振动响应计算模型.采用Newmark-β积分法获得车桥耦合振动响应数值解.讨论了车辆、车速、桥面不平顺、桥的阻尼等因素对桥梁冲击系数的影响.分析表明,在设计中应综合考虑这些参数对车桥耦合振动的影响.  相似文献   

10.
扁平箱梁已广泛应用于大跨度桥梁的主梁设计中,其颤振性能通常会借助物理和数值风洞的方法获得,测试周期长、费用高。尽管采用颤振计算公式可以简便计算扁平箱梁的颤振临界风速,但当前公式中未考虑扁平箱梁气动外形和来流攻角的具体影响,计算误差较大,无法用于实际工程设计。为了提升颤振计算公式中联合折减系数的准确度,利用节段模型风洞试验开展气动外形和风攻角对扁平箱梁颤振性能影响的研究。在分析各种气动构件和外形参数对扁平箱梁颤振性能的影响后,确定以斜腹板倾角和宽高比为气动外形变量,设计制作3组12个节段模型,分别在5个风攻角下测试了有栏杆扁平箱梁的颤振性能。在此基础上,根据节段模型风洞试验获得的颤振临界风速,结合弯扭耦合颤振闭合解计算公式,量化了气动外形和风攻角变化对扁平箱梁颤振的影响,给出不同条件下扁平箱梁颤振计算公式中的联合折减系数。最后,基于实际桥梁的颤振临界风速算例,验证利用联合折减系数计算颤振临界风速的准确性和适用性。研究结果表明:在0°风攻角和正风攻角下,当扁平箱梁的宽高比分别为11,9时,斜腹板倾角的减小有利于颤振临界风速提高,宽高比为7时,斜腹板倾角对颤振临界风速没有影响;在负风攻角下,3组宽高比模型斜腹板倾角的减小均会引起扁平箱梁颤振临界风速的降低;联合折减系数与扁平箱梁截面的颤振性能正相关,可直接反映其颤振性能,相对于目前《公路桥梁抗风设计规范》中扁平箱梁颤振临界风速计算时的固定折减系数,该系数能够具体和准确反映气动外形和风攻角对扁平箱梁颤振的影响,可以结合颤振计算公式快速、准确地计算出大跨度桥梁颤振临界风速。  相似文献   

11.
为了揭示主梁基本气动外形对悬索桥颤振性能的影响,以一座大跨悬索桥为例,分别选取流线型箱型、边箱型与分离式双箱型3种典型断面作为大桥主梁的基本气动外形。采用强迫振动法并基于CFD数值模拟获取各断面的气动参数,并采用阶跃函数法建立主梁的气动自激力时域模型;然后利用ANSYS平台进行全桥时域颤振有限元分析,得到各断面对应的颤振临界风速与颤振频率。结果表明:分离式双箱断面的颤振性能最佳,其颤振临界风速达到109.6 m/s,远高于其他2种断面;流线型断面与边箱型断面的颤振临界风速分别为89.4 m/s与86.9 m/s,两者的颤振性能相差不大;由频谱及相位分析可知,3种断面的颤振频率介于竖弯与扭转基频之间,颤振形式表现为不同程度的扭弯耦合振动。  相似文献   

12.
将连续梁桥简化为二维的平面梁单元模型,车辆简化为五自由度二分之一车模型,分别建立车辆与桥梁运动方程;该方法以轮胎接触处位移协调条件与轮胎相互作用力为条件,建立车辆与桥梁耦合振动方程,利用模态综合法进行迭代求解,在每一时间步长内运用Newmark-β积分格式。通过本文数值解与Runge-kutta方法的解析解进行对比,证明该方法确实有效可行。由于桥梁振动响应主要由若干低阶振动模态起控制作用,对于大跨度复杂桥梁,这就大大减少了矩阵的维数,提高了计算速度,且该方法对于不同类型桥梁具有很强的通用性。  相似文献   

13.
通过对计算流体力学商用软件FLUENT二次开发,建立了二维弯曲和扭转流固耦合数值仿真计算模型,研究6种钢箱梁桥梁方案的颤振稳定性:①整体钢箱梁;②~④不同中央开槽率的钢箱梁(开槽率分别为20%,40%和100%);⑤中央开槽与中央稳定板组合钢箱梁;⑥中央开槽与中央稳定板和水平稳定板组合钢箱梁。数值计算结果表明,对于颤振稳定性,中央开槽钢箱梁优于整体式钢箱梁;在假定主梁截面特性及桥梁自振频率不变的条件下,适当的开槽率可以使钢箱梁颤振临界风速达到最高;中央开槽与中央稳定板和水平稳定板组合钢箱梁可进一步提高桥梁颤振临界风速。数值仿真计算结果和风洞试验结果基本吻合。  相似文献   

14.
以一深水圆形高墩为研究对象,运用有限元数值分析程序,分别基于势流体理论和粘性流体Navier Stokes(N-S)方程建立地震动加速度、位移输入方式下三维流固耦合分析模型,通过对比不同流固耦合模拟方法下地震响应变化情况及不同地震动输入方式下地震响应拟合情况,验证势流体数值方法的有效性,并得到不同流固耦合模拟方法相适应的地震动输入方式。结果表明,采用势流体理论建立流固耦合模型,加速度与位移输入方式下的地震响应拟合较好;采用粘性流体N-S方程建立流固耦合模型,位移输入方式下地震响应变化规律更符合实际情况,而加速度输入方式下的结果变化呈现不同的规律;相比采用基于粘性流体N-S方程建立的模型,采用基于势流体理论建立的分析模型的计算结果更保守,更有利于深水高墩桥梁的抗震设计。  相似文献   

15.
针对结构涡激振动数值模拟问题,以开源流体动力学计算软件OpenFOAM 3.0为平台建立结构涡激振动数值模拟方法,即将结构涡激振动问题简化为单自由度振子模型,采用Newmark-β法进行结构振动方程求解,应用OpenFOAM动网格求解器进行动网格计算与更新。以宽高比为5的矩形断面为例,首先采用3种不同的雷诺平均(RANS)湍流模型(即SST k-ω,k-ε和k-ω模型)进行风攻角为a=0°,2°,4°,6°时静止绕流计算,以检验不同湍流模型的计算精度;然后对矩形断面在0°风攻角下竖向涡振响应进行了数值模拟,并与已有文献和试验结果进行比较。研究表明:3种湍流模型的计算结果总体较为接近,且与试验结果较为吻合,其中SST k-ω湍流模型的计算结果与试验结果吻合相对最好;对于升力系数和升力矩系数,3种湍流模型的计算结果都与试验结果存在一定的差异;总体而言采用OpenFOAM的SST k-ω湍流模型所得静止矩形断面绕流计算结果与试验结果吻合较好。矩形断面涡激振动响应数值模拟结果与试验结果相比锁定风速区间有一定前移,且最大涡振振幅较试验结果略偏大。  相似文献   

16.
为了提高桥梁颤振临界风速以及颤振导数在初步设计阶段的预估工作效率,本文在风洞试验和CFD计算的基础上,结合神经网络技术,建立一种基于神经网络的快速预测Ⅱ型断面颤振导数的方法。研究结果表明,预测结果具有高精度,与数值模拟结果相近。  相似文献   

17.
针对大跨度桥梁软颤振非线性特性,采用弹簧悬挂节段模型风洞试验法,研究了典型扁平箱梁断面(宽高比10.7:1)在均匀流场下的软颤振响应,并采用一种新型的高精度测力技术——内置天平同步测力测振法测量了非线性颤振自激力时程,该测力技术可大幅降低天平信号中的惯性力成分,提高自激力的测量精度。试验结果表明:扁平流线型箱梁断面在风攻角5°、±3°和0°时均出现了软颤振响应,观测到的软颤振现象表现为自限幅的极限环振荡,振幅随着风速的增加而增大,随着风攻角的增大,软颤振起振风速降低,振幅增加的斜率变缓;软颤振振动出现在扭转模态,竖向和扭转位移均存在一定的高次谐波成分,但与基频相比较为微弱,可以忽略;扁平箱梁断面的软颤振具有显著的弯扭自由度耦合特性,弯扭耦合程度随风速增加而增大,在软颤振振幅发展过程中,节段模型仍然以线性扭转复模态的形式振动,扭转复模态向量的幅值变化较为明显(约15%),需要考虑其随振幅的缓变特性,相位特性变化非常微弱(相位差变化小于3%),可以忽略。基于内置天平同步测力测振技术,测量得到的非线性自激力信号能够较为精确地计算软颤振振动位移时程,具有较高的精度,自激升力和自激扭矩均在大振幅下表现出显著的高次谐波成分。  相似文献   

18.
为研究钢桁梁悬索桥主梁截面气动性能及大跨度悬索桥抗风性能,以某桁梁式大跨度悬索桥结构为工程背景,采用CFD数值模拟方法,开展大跨度悬索桥桁架式主梁截面气动力参数的简化分析,并对大跨度悬索桥颤振和抖振特性进行了研究。研究结果表明:采用简化的板桁主梁CFD分析模型,将三维结构等效为二维平面,有效地降低了建模难度和计算工作量;根据颤振分析结果,颤振风速为50. 5m/s小于颤振临界风速为124. 2m/s,颤振性能良好;由成桥状态下脉动风作用下桥梁抖振响应结果,桥梁在风致抖振作用下性能良好,结构具有良好的气动性。  相似文献   

19.
为阐明钢-混组合梁形式的斜拉桥抗风性能,以某钢-混叠合梁大跨度斜拉桥为工程实例,采用基于CFD方法的数值模拟,开展大跨度斜拉桥钢-混叠合梁式主梁截面气动力参数的计算分析,同时研究了大跨度斜拉桥颤振和抖振特性。研究结果表明:根据颤振分析结果,颤振风速为63.7m/s小于颤振临界风速为97.6m/s,颤振性能良好;由抖振响应分析结果可知,桥梁具有良好的风致振动性能。  相似文献   

20.
由于风洞试验和理论模型的各种不确定性,通过风洞试验获得的颤振导数及相应的颤振临界风速存在不确定性。为了量化这些不确定性,提出了一种创新的近似贝叶斯方法。该方法通过抽样和模拟来近似表达似然函数,从而实现颤振导数的准确识别和不确定性量化。同时,还研究了颤振导数不确定性在颤振分析中的传播情况。采用子集模拟技术与近似贝叶斯方法相结合,以提高参数后验样本的抽样效率。该方法不仅能够获得颤振导数和颤振临界风速的最优估计,还能获得其后验概率分布。通过理想平板数值模拟和实桥主梁断面风洞试验,验证了该方法的有效性,并将其与传统最小二乘法进行了比较。研究结果显示:该方法得到的颤振导数最优估计与最小二乘法结果非常接近;在低风速下,所有导数的不确定性都较小,而在中高风速情况下,大多数导数都具有较大的不确定性,尤其是接近颤振临界风速时,所有导数的不确定性均较大;颤振导数的不确定性会在颤振分析中传播,导致颤振临界风速也存在较大的不确定性。所提出的近似贝叶斯方法能够准确识别颤振导数,并量化其不确定性,从而实现桥梁颤振性能的概率性评价;为桥梁颤振分析提供了新的思路,为确保桥梁的抗风安全提供了有力支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号