首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, two kinematics-based observers are proposed to estimate the vehicle roll and pitch angles by using an inertial measurement unit. The observers are mathematically proven to be stable if the vehicle yaw rate is not zero. With a design variation of the observer gains, the estimated roll or pitch angle is shown to further asymptotically converge to the true value, eliminating possible errors caused by the biases of the acceleration signals. Simulation results show that accurate estimation of both pitch and roll angles can be achieved without the help of external sensors such as global positioning systems, either by using the accelerometer-based reference pitch or roll angle as the maneuver varies, or by using an observer with zero steady-state error property.  相似文献   

2.
Accurate lateral load transfer estimation plays an important role in improving the performance of the active rollover prevention system equipped in commercial vehicles. This estimation depends on the accurate prediction of roll angles for both the sprung and the unsprung subsystems. This paper proposes a novel computational method for roll-angle estimation in commercial vehicles employing sensors which are already used in a vehicle dynamic control system without additional expensive measurement units. The estimation strategy integrates two blocks. The first block contains a sliding-mode observer which is responsible for calculating the lateral tyre forces, while in the second block, the Kalman filter estimates the roll angles of the sprung mass and those of axles in the truck. The validation is conducted through MATLAB/TruckSim co-simulation. Based on the comparison between the estimated results and the simulation results from TruckSim, it can be concluded that the proposed estimation method has a promising tracking performance with low computational cost and high convergence speed. This approach enables a low-cost solution for the rollover prevention in commercial vehicles.  相似文献   

3.
In this paper, a new method is presented for estimating the current sprung mass inertial parameters of a vehicle, such as the mass, pitch and roll mass moments of inertia, and lateral and longitudinal centre of gravity locations. The method measures the sprung mass response when the vehicle is driven over an unknown and unmeasured random road profile. From these measurements, the equivalent free-decay responses are extracted and modal analysis techniques used to estimate the sprung mass natural frequencies, damping ratios and mode shapes. This information is combined with a simplified vehicle estimation model, least squares analysis and known equivalent stiffness parameters to estimate the vehicles’ inertial parameters. The results obtained from several simulation examples show that estimates of the inertial parameters generally have small relative errors.  相似文献   

4.
为有效解决复杂行驶工况下车辆耦合侧倾运动状态无法精确获取,进而对车辆系统操纵稳定性与乘坐舒适性兼顾优化无法提供准确输入的难题,本文中设计了基于车辆垂向与横向耦合动力学的双非线性状态观测器算法,以实现复杂行驶工况下车辆耦合侧倾运动状态的实时准确估计。首先,建立了路面激励模型与整车系统垂向与横向耦合动力学模型;接着,利用无迹卡尔曼滤波方法(UKF)与非线性模糊观测(T-S)理论,设计了非线性状态观测算法,以在不同路面激励工况下对车辆系统簧载质量与侧倾状态进行联合估计;最后,运用CarSim■动力学软件,对比分析了在标准A级与C级路面上进行J-turn试验工况下,采用联合状态观测器(UKF&T-S)实时估计车辆侧倾角与侧倾率的观测精度。结果表明,本文所设计的UKF&T-S观测器可有效估计车辆侧倾状态,且与CarSim■仿真数据相比识别状态标准偏差不超过10%。  相似文献   

5.
A lateral acceleration is considered to be a significant sensor signal for an estimation of a side slip angle. Due to the fact that a characteristic of a lateral G sensor, the sensor has a technical issue when a road bank angle has presented. In order to resolve the issue, this paper describes a novel method for the real time estimation of a vehicle side slip angle and a road bank angle simultaneously. A Bayesian tracking approach is used to estimate the road bank angle by comparing a measured lateral acceleration with the calculated one in the case of various angle. A Kalman Filter has been implemented through bicycle model using vehicle roll angle, road bank angle and angular velocity of side slip angle. The performance of the proposed estimation method has been evaluated via vehicle tests on a real road.  相似文献   

6.
This article seeks to develop a longitudinal vehicle velocity estimator robust to road conditions by employing a tyre model at each corner. Combining the lumped LuGre tyre model and the vehicle kinematics, the tyres internal deflection state is used to gain an accurate estimation. Conventional kinematic-based velocity estimators use acceleration measurements, without correction with the tyre forces. However, this results in inaccurate velocity estimation because of sensor uncertainties which should be handled with another measurement such as tyre forces that depend on unknown road friction. The new Kalman-based observer in this paper addresses this issue by considering tyre nonlinearities with a minimum number of required tyre parameters and the road condition as uncertainty. Longitudinal forces obtained by the unscented Kalman filter on the wheel dynamics is employed as an observation for the Kalman-based velocity estimator at each corner. The stability of the proposed time-varying estimator is investigated and its performance is examined experimentally in several tests and on different road surface frictions. Road experiments and simulation results show the accuracy and robustness of the proposed approach in estimating longitudinal speed for ground vehicles.  相似文献   

7.
基于Dugoff轮胎模型建立了车辆的非线性动力学方程,并给出了路面附着系数的约束条件.针对车速和路面附着系数约束的非线性估计,提出了一种基于滚动优化原理的滚动时域估计法(MHE),并给出了MHE法的具体步骤.在不同路面上对MHE法进行了多种工况的实验验证,并在同样条件下与扩展Kalman滤波法进行了比较.实验结果表明,MHE法的估计性能优于扩展Kalman滤波法.  相似文献   

8.
车辆结构参数和道路环境信息的实时准确获取是提高智能汽车运动控制性能的重要因素之一,而车辆质量与道路坡度信息是多种汽车控制系统的必要信息,因此质量与坡度在线估计的研究一直受到关注。针对车辆质量与道路坡度的联合估计问题,提出了一种基于交互多模型的质量与坡度融合估计方法。首先,设定了适宜进行质量精确估计的工况条件,据此提出了基于模糊规则的质量估计置信度因子计算算法,进而设计了基于置信度因子的递推最小二乘车辆质量估计算法,以实现质量的在线估计。然后,以车辆纵向动力学模型为基础,建立了运动学和动力学2种坡度估计模型,并设计了基于运动学模型的线性卡尔曼滤波坡度观测器,基于电子稳定性程序ESP的纵向加速度信息实现坡度估计,设计了基于动力学模型的无迹卡尔曼滤波坡度观测器,基于ESP和发动机管理系统EMS的力信息实现坡度估计。运动学模型未考虑车辆姿态信息,坡度估算结果与实际值有偏差;动力学模型对模型精度要求高,算法稳定性差,为充分发挥2种方法优势实现坡度的精确估计,采用交互多模型算法实现了2种坡度估计方法的加权融合。最后,对所设计的算法进行了实车试验验证。结果表明:所设计的质量与坡度估算算法具有较好的实时性和准确性,适合智能汽车运动控制的应用需求。  相似文献   

9.
This article describes a method of vehicle dynamics estimation for impending rollover detection. This method is evaluated via a professional vehicle dynamics software and then through experimental results using a real test vehicle equipped with an inertial measurement unit. The vehicle dynamic states are estimated in the presence of the road bank angle (as a disturbance in the vehicle model) using a robust observer. The estimated roll angle and roll rate are used to compute the rollover index which is based on the prediction of the lateral load transfer. In order to anticipate the rollover detection, a new method is proposed in order to compute the time-to-rollover using the load transfer ratio. The used nonlinear model is deduced from the vehicle lateral dynamics and is represented by a Takagi–Sugeno (TS) fuzzy model. This representation is used in order to take into account the nonlinearities of lateral cornering forces. The proposed TS observer is designed with unmeasurable premise variables in order to consider the non-availability of the slip angles measurement. Simulation results show that the proposed observer and rollover detection method exhibit good efficiency.  相似文献   

10.
This paper qualitatively and quantitatively reviews and compares three typical tyre–road friction coefficient estimation methods, which are the slip slope method, individual tyre force estimation method and extended Kalman filter method, and then presents a new cost-effective tyre–road friction coefficient estimation method. Based on the qualitative analysis and the numerical comparisons, it is found that all of the three typical methods can successfully estimate the tyre force and friction coefficient in most of the test conditions, but the estimation performance is compromised for some of the methods during different simulation scenarios. In addition, all of these three methods need global positioning system (GPS) to measure the absolute velocity of a vehicle. To overcome the above-mentioned problem, a novel cost-effective estimation method is proposed in this paper. This method requires only the inputs of wheel angular velocity, traction/brake torque and longitudinal acceleration, which are all easy to be measured using available sensors installed in passenger vehicles. By using this method, the vehicle absolute velocity and slip ratio can be estimated by an improved nonlinear observer without using GPS, and the friction force and tyre–road friction coefficient can be obtained from the estimated vehicle velocity and slip ratio. Simulations are used to validate the effectiveness of the proposed estimation method.  相似文献   

11.
Vehicle stability and active safety control depend heavily on tyre forces available on each wheel of a vehicle. Since tyre forces are strongly affected by the tyre–road friction coefficient, it is crucial to optimise the use of the adhesion limits of the tyres. This study presents a hybrid method to identify the road friction limitation; it contributes significantly to active vehicle safety. A hybrid estimator is developed based on the three degrees-of-freedom vehicle model, which considers longitudinal, lateral and yaw motions. The proposed hybrid estimator includes two sub-estimators: one is the vehicle state information estimator using the unscented Kalman filter and another is the integrated road friction estimator. By connecting two sub-estimators simultaneously, the proposed algorithm can effectively estimate the road friction coefficient. The performance of the proposed estimation algorithm is validated in CarSim/Matlab co-simulation environment under three different road conditions (high-μ, low-μ and mixed-μ). Simulation results show that the proposed estimator can assess vehicle states and road friction coefficient with good accuracy.  相似文献   

12.
13.
在交通事故鉴定中,车辆行驶速度是事故处理和诉讼的重要依据。其中,路面附着系数是事故车速鉴定的重要参数。本文在大量实验数据基础上,拟合出车辆制动过程的特性曲线,并简化出相应的车速估算模型。利用此模型对不同车型、路面类型、湿滑状况和不同车速情况下的路面附着系数e进行了估算研究。经估算实例验证,文中的估算方法对不同状况下的路面附着系数具有较好的估算能力。  相似文献   

14.
Monitoring vehicle operation conditions has become significantly important in modern high-speed railway systems. However, the operational impact of monitoring the roll angle of vehicle bodies has principally been limited to tilting trains, while few studies have focused on monitoring the running posture of vehicle bodies during operation. We propose a real-time posture monitoring method to fulfil real-time monitoring requirements, by taking rail surfaces and centrelines as detection references. In realising the proposed method, we built a mathematical computational model based on space coordinate transformations to calculate attitude angles of vehicles in operation and vertical and lateral vibration displacements of single measuring points. Moreover, comparison and verification of reliability between system and field results were conducted. Results show that monitoring of the roll angles of car bodies obtained through the system exhibit variation trends similar to those converted from the dynamic deflection of bogie secondary air springs. The monitoring results of two identical conditions were basically the same, highlighting repeatability and good monitoring accuracy. Therefore, our monitoring results were reliable in reflecting posture changes in running railway vehicles.  相似文献   

15.
陈浩  袁良信  孙涛  郑四发  连小珉 《汽车工程》2020,42(2):199-205,256
针对电动轮汽车车速与道路坡度估计问题,本文中基于纵向非线性动力学方程设计1阶扩张状态观测器对车速与坡度进行联合估计,分析了估计稳态误差;同时,采用带遗忘因子的递归最小二乘估计算法分离加速度传感器信号中的坡度信息,并设置了比例系数来融合两类坡度信息,最终得到道路坡度估计值。搭建MATLAB/Simulink-Carsim联合仿真平台进行变坡度路面仿真,并在实际坡道路面完成实车测试。仿真与试验结果表明,所提出的方法简单、可行。  相似文献   

16.
ABSTRACT

The interaction between the tyre and the road is crucial for understanding the dynamic behaviour of a vehicle. The road–tyre friction characteristics play a key role in the design of braking, traction and stability control systems. Thus, in order to have a good performance of vehicle dynamic stability control, real-time estimation of the tyre–road friction coefficient is required. This paper presents a new development of an on-line tyre–road friction parameters estimation methodology and its implementation using both LuGre and Burckhardt tyre–road friction models. The proposed method provides the capability to observe the tyre–road friction coefficient directly using measurable signals in real-time. In the first step of our approach, the recursive least squares is employed to identify the linear parameterisation form of the Burckhardt model. The identified parameters provide, through a T–S fuzzy system, the initial values for the LuGre model. Then, a new LuGre model-based nonlinear least squares parameter estimation algorithm using the proposed static form of the LuGre to obtain the parameters of LuGre model based on recursive nonlinear optimisation of the curve fitting errors is presented. The effectiveness and performance of the algorithm are demonstrated through the real-time model simulations with different longitudinal speeds and different kinds of tyres on various road surface conditions in both Matlab/Carsim environments as well as collected data from real experiments on a commercial trailer.  相似文献   

17.
A new approach is proposed for nonlinear asymptotic observers based on the cascade observer system with a fusion of sensor signals. In the observers, the characteristic of the vehicle dynamic system, the nonlinear tire force estimation, load transfer estimation, and road ramp angle compensation are considered. The errors in the observation of vehicle velocity were diminished, and the computation cost was decreased for a real-time microcontroller. Simulation and real vehicle test results validate the higher accuracy of the velocity estimation by the proposed observers under complicated handling maneuver conditions.  相似文献   

18.
针对独立驱动电动汽车在高附着系数路面高速急转时易发生侧翻事故,在低附着系数路面急转易发生侧滑失稳事故,且单一控制器在不同附着系数路面适应性较差等问题,根据独立驱动电动汽车特点设计了基于分层式结构的稳定性集成控制器。建立了整车动力学模型,并进行了车辆状态参数估计;设计了稳定性集成控制器的控制策略,对车辆的侧倾、横向稳定性状态判定条件和协调策略的制定进行了研究,分别设计了侧倾稳定性控制器和横向稳定性控制器;设置了路面附着系数0.9到0.2的对接路面仿真工况,并在此工况下对所设计的控制器的控制性能进行了仿真测试。结果表明,所设计的稳定性集成控制器相比于单一控制器具有更好的适应性,可有效降低车辆高速行驶过程中的横向载荷转移系数、质心侧偏角等状态量,提高车辆行驶的稳定性和安全性。  相似文献   

19.
A 7-DOF full-car model with optimal active control suspension is utilized to evaluate the vehicle dynamic performances which are achieved through proposed controllers. The optimal controller, which includes the integral action for the suspension deflection, considerably improves the attitude control of a vehicle because the rolling and pitching motion in cornering and braking maneuvers are reduced, respectively. In the viewpoint of level control, the integral control acting on the suspension deflection results in the zero steady-state deflection in response to static body forces and ramp road input. The dynamic characteristics of the suspension control system are evaluated in terms of time domain and frequency domain. The simulations in the time domain demonstrate the advantages of the active suspension system obtained by penalizing the integral and derivative of suspension deflections and the derivative of roll and pitch angles in the performance index. The frequency characteristic curves obtained by simulations regarding integral action or derivative action show the increase of both ride comfort and road-holding performances by maximizing the use of suspension deflections. The potential of derivative control is shown by the performances of the car traveling over a bump and braking.  相似文献   

20.
Knowledge of vehicle dynamics data is important for vehicle control systems that aim to enhance vehicle handling and passenger safety. This study introduces observers that estimate lateral load transfer and wheel–ground contact normal forces, commonly known as vertical forces. The proposed method is based on the dynamic response of a vehicle instrumented with cheap and currently available standard sensors. The estimation process is separated into three blocks: the first block serves to identify the vehicle’s mass, the second block contains a linear observer whose main role is to estimate the roll angle and the one-side lateral transfer load, while in the third block we compare linear and nonlinear models for the estimation of four wheel vertical forces. The different observers are based on a prediction/estimation filter. The performance of this concept is tested and compared with real experimental data acquired using the INRETS-MA (Institut National de Recherche sur les Transports et leur Sécurité – Département Mécanismes d’Accidents) Laboratory car. Experimental results demonstrate the ability of this approach to provide accurate estimation, thus showing its potential as a practical low-cost solution for calculating normal forces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号