首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The design of new pneumatic brakes for rail vehicles or improvements of existing ones can be made better or more efficient by the use of a simulation method. This paper gives a general presentation of the author’s modelling methods used for solving problems relating to railway pneumatic brakes. The brake models in this paper (slightly different from those of other authors) take into account air-wave phenomena including air viscosity, the influence of the brake pipe branches, heat transfer in the brake pipes and reservoirs, air flows in the brake valves and the dynamics of moving mechanical parts. For various simulation purposes, separate partial models with different levels of accuracy were created. Various verifications and identifications of the models were performed with the use of train brake testing facilities, including both in-house and other test stands. A variety of examples of simulation results are presented here.  相似文献   

2.
为实现电控机械式自动变速器(AMT)在升挡过程中对发动机以及变速器1轴的减速,使变速器目标挡位齿轮与输出轴同步最终实现换挡,文章设计了一种安装于变速器上的气动制动器。通过对变速器中间轴进行制动,实现减速升挡。安装试验结果表明,该气动制动器满足了在升挡过程中对发动机以及变速器1轴的减速要求。该制动装置具有结构简单及响应快速的特点,有效提高了换挡品质。  相似文献   

3.
针对重型载货汽车因气压制动系统发生管路破裂、机械故障或热衰退导致制动效能下降且不易察觉从而引发严重交通事故的问题,提出基于主成分分析降维(PCA降维)和马尔可夫模型的气压制动系统危险状态识别方法。考虑到三轴载货汽车双回路制动系统的结构复杂性以及制动过程制动踏板动作、系统压力建立和实现车辆减速具有明显的时序性特点,首先采用PCA降维的方法对系统状态进行辨识;然后运用驾驶人制动意图与制动系统响应的双层隐形马尔可夫模型对系统状态进行识别。受驾驶人习惯影响制动踏板作用瞬间辨识度低,采用混合高斯聚类法提取不同制动意图时制动保持阶段数据建立制动意图识别模型和系统响应识别模型,通过二者匹配程度判定系统状态。最后,分别依据实车试验数据对模型进行离线训练和在线辨识验证。试验结果表明:系统正常状态下,基于PCA降维和马尔可夫模型相结合的识别方法能够准确、有效地识别制动系统状态;制动管路断开压力降低状态下,PCA降维方法能够及时有效识别其危险状态。  相似文献   

4.
This paper deals with friction-induced vibration of a disc brake system with a constant friction coefficient. A linear, lumped, and distributed parameter model to represent the floating caliper disc brake system is proposed. The complex eigenvalues are used to investigate the dynamic stability, and, in order to verify simulations which are based on the theoretical model, an experimental modal test and dynamometer test are performed. The comparison of experimental and theoretical results shows good agreement, and the analysis indicates that modal coupling due to friction forces is responsible for disc brake squeal. Also, squeal type instability is investigated, using a parametric analysis. This indicates which parameters have influence on the propensity of brake squealing. This is helpful for validating the analysis model and establishing confidence in the experimental results of the modified system. These results may also be useful during system development or diagnostic analysis.  相似文献   

5.
An important aspect from the perspective of operational safety of heavy road vehicles is the detection and avoidance of collisions, particularly at high speeds. The development of a collision avoidance system is the overall focus of the research presented in this paper. The collision avoidance algorithm was developed using a sliding mode controller (SMC) and compared to one developed using linear full state feedback in terms of performance and controller effort. Important dynamic characteristics such as load transfer during braking, tyre-road interaction, dynamic brake force distribution and pneumatic brake system response were considered. The effect of aerodynamic drag on the controller performance was also studied. The developed control algorithms have been implemented on a Hardware-in-Loop experimental set-up equipped with the vehicle dynamic simulation software, IPG/TruckMaker®. The evaluation has been performed for realistic traffic scenarios with different loading and road conditions. The Hardware-in-Loop experimental results showed that the SMC and full state feedback controller were able to prevent the collision. However, when the discrepancies in the form of parametric variations were included, the SMC provided better results in terms of reduced stopping distance and lower controller effort compared to the full state feedback controller.  相似文献   

6.
气液混合型制动系的执行机构建模试验和仿真   总被引:2,自引:0,他引:2  
分析了用于多轴车制动系气液混合型执行机构各元件的动态特性 ,结合其鼓式制动器 ,提出了一种鼓式制动器的弹性特征模型 ;将各元器件有机结合 ,建立了整个执行机构的动态特性分析的数学模型 ,应用Mat lab工具进行仿真计算。将仿真计算和试验获得的压力建立过程进行对比分析 ,结果验证了仿真数学模型的正确性。  相似文献   

7.
刘欣 《汽车技术》1998,(5):19-21
为检测和评价桥车手制动和制动机构拉索及拉索导管的耐久性能,研制了桥车手制动及后轮跳动疲劳试验台。  相似文献   

8.
Traction and braking systems deeply affect longitudinal train dynamics, especially when an extensive blending phase among different pneumatic, electric and magnetic devices is required. The energy and wear optimisation of longitudinal vehicle dynamics has a crucial economic impact and involves several engineering problems such as wear of braking friction components, energy efficiency, thermal load on components, level of safety under degraded or adhesion conditions (often constrained by the current regulation in force on signalling or other safety-related subsystem). In fact, the application of energy storage systems can lead to an efficiency improvement of at least 10% while, as regards the wear reduction, the improvement due to distributed traction systems and to optimised traction devices can be quantified in about 50%. In this work, an innovative integrated procedure is proposed by the authors to optimise longitudinal train dynamics and traction and braking manoeuvres in terms of both energy and wear. The new approach has been applied to existing test cases and validated with experimental data provided by Breda and, for some components and their homologation process, the results of experimental activities derive from cooperation performed with relevant industrial partners such as Trenitalia and Italcertifer. In particular, simulation results are referred to the simulation tests performed on a high-speed train (Ansaldo Breda Emu V250) and on a tram (Ansaldo Breda Sirio Tram). The proposed approach is based on a modular simulation platform in which the sub-models corresponding to different subsystems can be easily customised, depending on the considered application, on the availability of technical data and on the homologation process of different components.  相似文献   

9.
AUDI盘式制动器的幂函数乘积模型   总被引:3,自引:0,他引:3  
本文采用正交及回归试验设计技术,以制动压力与制动初速度为试验因素,以制动力矩为试验指标,在JF-132型汽车制动器试验台上进行了AUDI盘式制动器摩擦特性的回归实验,根据实验结果,建立了AUDI盘式制器的幂函数乘积模型并进行了统计检验。  相似文献   

10.
半挂汽车列车制动系统设计与试验研究   总被引:1,自引:0,他引:1  
根据半挂汽车列车制动特点,在研究制动控制阀、继动阀等部件的基础上,设计了某半挂汽车列车气动制动系统。针对半挂汽车列车制动性能的特殊性,设计了相应的试验方案并依据国家标准进行了多项制动效能道路试验。试验结果表明,所设计的制动系统性能良好、安全性高,可满足道路行驶的要求。  相似文献   

11.
盘式制动器制动抖动现象机理研究   总被引:1,自引:0,他引:1  
李莉  尹东晓  张立军 《汽车工程》2006,28(4):361-365
介绍某轿车的制动抖动试验情况,根据实测的制动盘几何特征建立数学模型,从理论分析该车制动时转向盘抖动是因制动盘端面跳动过大。同时还分析制动盘厚薄差和端面跳动对制动抖动的影响。分析结果表明,制动盘厚薄差对制动抖动的影响大于端面跳动的影响,并且两者之间还存在着相位匹配的关系。  相似文献   

12.
简要地对气压盘式制动器的基本结构、原理和主要技术参数进行了阐述,着重对盘式制动器与鼓式制动器的性能进行比较,突出了基制动性、散热性、可靠性、安全性等诸多方面明显优势,展示出这一新技术在客车领域的应用前景。  相似文献   

13.
目前,重卡普遍采用气制动,若制动管路空气质量差,将影响阀体的正常工作或者失效,降低制动效能。本文结合实际分析了影响制动管路空气质量的原因,提出了提高制动管路空气质量的几项对应措施,进一步提出了制动系统某些零部件匹配推荐值,对提升制动管路空气质量具有一定的参考意义。  相似文献   

14.
Freight wagons are usually equipped with the standard Union Internationale des Chemins de Fer pneumatic brake. On long trains, the propagation of the pneumatic signals along the pipe and different braking/loading conditions may produce delays and/or differences in the application of the braking effort along the train. This phenomenon may cause heavy longitudinal forces exchanged between wagons through buffers and draw gear. In particular, the workgroup n.6 (freight trains composition) of the Italcertifer committee has performed some preliminary studies concerning the application of LL braking operative conditions on freight wagons trains travelling on Italian lines. Partners have cooperated in this workgroup; however, in this paper, the attention is focused on methodologies and results concerning the contribution of University of Florence. The results of this activity, coordinated by RFI-CESIFER have been used to emanate the 20/07 rule of the RFI (‘Modifiche alla Prefazione Generale all'Orario di Servizio’) which modify the composition criterion rules of freight trains on the Italian Railways in order to introduce and discipline the application of the LL braking operative condition.  相似文献   

15.
Design and use of an eddy current retarder in an automobile   总被引:1,自引:0,他引:1  
In this study, the structure and working principles of an eddy current retarder acting as an auxiliary brake set is introduced in detail. Based on the principle of energy conservation, a mathematical model was developed to design a retarder whose nominal brake torque is 1, 900 N·m. According to the characteristics of the eddy current retarder, an exclusive test bed was developed and used for brake performance measurements. The main technical parameters, such as the brake characteristics, temperature characteristics and power consumption, were measured with the test bed. The test data show that the brake torque of the eddy current retarder obviously decreased in the continuous braking stage and that there is a certain amount of brake torque in the normal driving state because of the remnant magnetism of the rotor plate. The mathematical model could be used to design an eddy current retarder. The exclusive test bed could be used for optimization of an eddy current retarder as well as for R&D of a series of products.  相似文献   

16.
In vehicle braking systems, the non-uniform contact pressure distribution on the brake pad is a major cause of uneven wear. The experimental approach of the wear phenomenon is the time consuming and costly. For this reason, a threedimensional finite element (FE) model of a brake system is presented for numerical simulation in this paper. A coupled thermo-mechanical analysis is carried out to confirm the non-uniform contact pressure distribution. A correlation between the non-uniform contact pressure and uneven wear is confirmed by measuring the amount of wear in the brake pad. The shape optimization of the brake pad is performed to reduce the uneven wear. In addition, the simulation results, such as natural frequency and temperature, are compared to experimental results.  相似文献   

17.
Brake systems of the future, including BBW (Brake-by-Wire), are in development in various forms. In one of the proposed hydraulic BBW systems, an electric booster system replaces the pneumatic brake booster with an electric motor and a rotational-to-linear motion mechanism. This system is able to provide improved braking performance by the design of controllers with precise target pressure tracking and control robustness for better system reliability. First, a sliding mode controller is designed using the Lyapunov function approach to secure the robustness of the system against both the model uncertainty and the disturbance caused by the master cylinder and mechanical components. Next, a simulation tool is constructed to validate the electric booster system with the proposed controller. Finally, the electric booster system is implemented into an actual brake ECU and installed in a vehicle for testing under various braking conditions. The experimental results demonstrate that the proposed controller produces faster pressure build-up performance than the conventional brake system, and its tracking performance is sufficient to ensure comfortable braking.  相似文献   

18.
It is important to consider the robustness when designing brake control systems, because of the model's uncertainties that result from the nonlinear characteristics of wheel-to-rail adhesion forces and brake material friction coefficients. This paper presents the experimental results from the new wheel-slip prevention control using nonlinear robust control theory. The authors performed experiments for the proposed wheel-slip prevention control to compare it with the conventional control laws. The experimental results proved the comparative effectiveness of the proposed control and showed high brake performance under nonlinear characteristics of brake dynamics.  相似文献   

19.
This paper addresses modelling, longitudinal control design and implementation for heavy-duty vehicles (HDVs). The challenging problems here are: (a) an HDV is mass dominant with low power to mass ratio; (b) They possess large actuator delay and actuator saturation. To reduce model mismatch, it is necessary to obtain a nonlinear model which is as simple as the control design method can handle and as complicated as necessary to capture the intrinsic vehicle dynamics. A second order nonlinear vehicle body dynamical model is adopted, which is feedback linearizable. Beside the vehicle dynamics, other main dynamical components along the power-train and drive-train are also modelled, which include turbocharged diesel engine, torque converter, transmission, transmission retarder, pneumatic brake and tyre. The braking system is the most challenging part for control design, which contains three parts: Jake (engine compression) brake, air brake and transmission retarder. The modelling for each is provided. The use of engine braking effect is new complementary to Jake (compression) brake for longitudinal control, which is united with Jake brake in modelling. The control structure can be divided into upper level and lower level. Upper level control uses sliding mode control to generate the desired torque from the desired vehicle acceleration. Lower level control is divided into two branches: (a) engine control: from positive desired torque to desired fuel rate (engine control) using a static engine mapping which basically captures the intrinsic dynamic performance of the turbo-charged diesel engine; (b) brake control: from desired negative torque to generate Jake brake cylinder number to be activated and ON/OFF time periods, applied pneumatic brake pressure and applied voltage of transmission retarder. Test results are also reported.  相似文献   

20.
This paper addresses modelling, longitudinal control design and implementation for heavy-duty vehicles (HDVs). The challenging problems here are: (a) an HDV is mass dominant with low power to mass ratio; (b) They possess large actuator delay and actuator saturation. To reduce model mismatch, it is necessary to obtain a nonlinear model which is as simple as the control design method can handle and as complicated as necessary to capture the intrinsic vehicle dynamics. A second order nonlinear vehicle body dynamical model is adopted, which is feedback linearizable. Beside the vehicle dynamics, other main dynamical components along the power-train and drive-train are also modelled, which include turbocharged diesel engine, torque converter, transmission, transmission retarder, pneumatic brake and tyre. The braking system is the most challenging part for control design, which contains three parts: Jake (engine compression) brake, air brake and transmission retarder. The modelling for each is provided. The use of engine braking effect is new complementary to Jake (compression) brake for longitudinal control, which is united with Jake brake in modelling. The control structure can be divided into upper level and lower level. Upper level control uses sliding mode control to generate the desired torque from the desired vehicle acceleration. Lower level control is divided into two branches: (a) engine control: from positive desired torque to desired fuel rate (engine control) using a static engine mapping which basically captures the intrinsic dynamic performance of the turbo-charged diesel engine; (b) brake control: from desired negative torque to generate Jake brake cylinder number to be activated and ON/OFF time periods, applied pneumatic brake pressure and applied voltage of transmission retarder. Test results are also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号