首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
为研究弯扭条件下正交异性钢桥面板的疲劳性能,根据某实际桥梁图纸制作了6个足尺试件模型,模型由盖板、U肋和横隔板3部分组成,模型间各部分通过焊接连接。首先,采用有限元软件ANSYS对试件受力情况进行数值模拟,获得静力荷载作用下试件的内力分布,确定疲劳试验所要加载的疲劳荷载大小以及要观测热点应力的位置。然后,对6个盖板-U肋-横隔板试件进行高周疲劳加载,观察并记录了试验过程中试件开裂位置、试件的裂缝发展情况和试件开裂过程中竖向位移的变化,分析了复杂应力下桥面板疲劳裂缝扩展、刚度退化和疲劳寿命等。结果表明:弯扭条件下盖板-U肋-横隔板焊接连接试件疲劳开裂出现在焊缝焊趾处,且盖板上靠近U肋处裂缝扩展路线呈弧形;弯扭条件下裂纹扩展可大致分为裂纹萌生阶段、稳定扩展阶段、贯穿板厚阶段和疲劳断裂阶段;加载前期试件刚度退化不明显,接近疲劳破坏时刚度大幅下降,并建立了盖板-U肋-横隔板连接节点竖向位移变化值与疲劳特性参数之间的大致关系;裂缝扩展阶段疲劳寿命较短,其他3个阶段寿命大致相同;给出了测点热点应力突变和肉眼可见裂缝两种准则下的S-N曲线,试验所得盖板-横隔板焊接连接细节疲劳强度均高于国际焊接协会标准IIW和欧洲规范3推荐的FAT 90,FAT 100,FAT 112以及FAT 125的细节疲劳强度。  相似文献   

2.
正交异性钢桥面板的板-肋焊接处是车辆荷载下极易开裂的位置,通过UHPC加固可以有效减小钢桥面板的疲劳风险。为了研究UHPC加固钢桥面板的效果,基于线弹性断裂力学展开有限元分析。通过正交异性钢桥面板试验案例作为参考对焊趾处的疲劳性能进行计算,验证了有限元模型的可靠性,通过在焊接细节处插入初始裂纹进行应力强度因子计算分析,考虑不同加载位置以及UHPC层厚度对裂纹尖端的应力强度因子值的影响。研究结果表明:顶板处焊缝位置的热点应力要高于U肋处的焊缝,热点应力受荷载位置影响较为明显;增加UHPC层可有效增加正交异性钢桥面板的刚度,从而减少裂纹尖端的应力集中,增设50 mm厚的UHPC铺装层时,初始裂纹尖端的应力强度因子减小约89%,研究内容可为UHPC加固钢桥面板设计提供参考。  相似文献   

3.
为了改善常规正交异性钢桥面板的疲劳开裂问题,提出新型半开口纵肋正交异性钢桥面板结构,该结构通过在纵肋底部开口实现顶板与纵肋双面焊接,提高焊缝质量,降低纵肋与横隔板的刚度差。为验证该新型钢桥面板的疲劳性能,设计制作钢桥面板节段足尺模型进行疲劳试验,采用应力应变法、数字图像法、声发射法等技术监测应力和裂纹发展。结果表明:在1 000万次循环加载过程中,新型钢桥面板各构造细节处均未出现疲劳裂纹;与常规正交异性钢桥面板相比,新型钢桥面板纵肋与横隔板连接处的应力幅大幅降低;新型钢桥面板结构显著改善了正交异性钢桥面板的抗疲劳性能。  相似文献   

4.
为研究新型热轧纵肋正交异性钢桥面板的纵肋-盖板焊接接头的疲劳性能,以已有大跨度公路桥梁为背景,分别建立传统典型纵肋桥面板和新型热轧纵肋桥面板模型,利用ABAQUS有限元程序对多种轮位加载工况下2种桥面板的焊接接头关注点的疲劳应力幅进行对比分析,并分析了内横隔板对降低肋壁关注点应力幅所起的作用.研究表明,与典型纵肋桥面板相比,新型纵肋正交异性钢桥面板盖板上的应力关注点应力幅更小,而肋壁上的关注点应力幅稍大;在新型纵肋桥面板的肋壁内增设顶部小横隔板可降低其在荷载作用下产生的应力幅值;新型纵肋正交异性钢桥面板在自重和加工成本方面工程应用前景良好.  相似文献   

5.
为估算正交异性钢桥面U肋与横梁相交处的疲劳寿命,以某新建铁路桥节段正交异性钢桥面足尺试件为研究对象,建立两个阶段有限元模型进行了计算分析。通过应用ANSYS有限元软件建立铁路桥节段正交异性钢桥面足尺试件整体模拟,对比分析了正交异性钢桥面U肋横梁相交处的应力和位移计算值与足尺试件相应部位的试验值,发现正交异性钢桥面有限元计算值与足尺试件试验值吻合的很好。在此基础上,采用子模型技术建立了正交异性钢桥面U肋与横梁相交处带椭圆形裂纹的二阶段模型,将退化奇异单元布置在椭圆形裂纹前沿,通过位移外推得到了不同裂纹深度下裂纹尖端的应力强度因子,得到不同裂纹深度与应力强度因子的关系曲线,分析了应力强度因子随裂纹扩展深度的变化规律。基于初始裂纹尺寸合理判定,将应力强度因子数值与裂纹尺寸的函数关系式代入疲劳裂纹扩展模型Paris公式,逐步数值积分得到正交异性钢桥面U肋与横梁相交处的疲劳寿命。计算结果与试验结果进行了比较,发现初始裂纹尺寸为0.1 mm时,计算结果与试验结果最为接近。不同初始裂纹尺寸的裂纹扩展曲线表明位于U肋与横梁相交位置裂纹的疲劳寿命主要消耗在开裂初期,后期裂纹扩展寿命对疲劳寿命贡献不大,这可以解释试验中观察到疲劳裂纹萌生、发展的现象。  相似文献   

6.
国内一些公路钢桥使用7~8年后,正交异性钢桥面板出现不同程度的疲劳问题。针对这些正交异性钢桥面板疲劳现象,国内外已进行了不少研究。但目前这些研究主要以疲劳试验为主,缺乏理论分析,还没有确定疲劳应力强度因子和顶板厚度与疲劳构造细节的关系等。将断裂力学理论和精细化数据模拟分析相结合,确定正交异性钢桥面板顶板与U肋焊接处的应力强度因子,明确不同顶板厚度、不同位置处的疲劳寿命和桥面板厚度与疲劳构造细节之间的关系等。  相似文献   

7.
为了深刻认识正交异性钢桥面板的疲劳特性,准确评估其疲劳抗力,对纵肋与顶板焊接细节进行了三维疲劳裂纹扩展模拟。提出了一种主要针对椭圆或半椭圆形疲劳裂纹的扩展模拟方法,采用相互作用积分法计算裂纹尖端处的应力强度因子K,作为三维裂纹模拟的基本参量。以青山长江公路大桥正交异性钢桥面板疲劳试验节段模型为研究对象,将纵肋与顶板焊接细节处的疲劳裂纹近似为单个半椭圆形裂纹,对其扩展过程进行三维模拟,通过试验结果验证了所提方法的有效性。在此基础上将初始裂纹分别设置于焊根和顶板焊趾,探讨了顶板厚度和U肋形式对于纵肋与顶板焊接细节疲劳裂纹扩展特性的影响问题。研究结果表明:所提出的方法能够准确模拟纵肋与顶板焊接细节疲劳裂纹的扩展过程,适用于其疲劳问题研究;增加顶板厚度能够有效改善纵肋与顶板焊接细节处的疲劳性能;相对于传统纵肋与顶板焊接细节而言,顶板与镦边U肋焊根和焊趾处的疲劳裂纹扩展特性和疲劳抗力没有显著差别,顶板与镦边U肋焊缝构造细节难以显著改善焊根和顶板焊趾处的疲劳性能;萌生于焊根并向顶板扩展的疲劳失效模式是控制传统纵肋与顶板焊接细节和顶板与镦边U肋焊缝构造细节疲劳性能的主导疲劳失效模式。  相似文献   

8.
为提高正交异性钢桥面板U肋与钢桥面板连接焊缝的疲劳耐久性,开发了正交异性钢桥面板U肋内焊技术,通过龙门焊接平台驱动连杆,将6台内焊机器人送入6根U肋内部同时进行12条内侧角焊缝的焊接。解决了U肋内焊设备、工艺、检测、返修等方面的关键技术,实现U肋内焊的可靠、优质、高效焊接。U肋内焊技术将U肋与钢桥面板之间的连接焊缝由单面角焊缝改变为双面角焊缝形式,从根本上改善U肋焊缝焊根处应力集中问题,避免从焊缝焊根处产生疲劳裂纹,同时大幅提高桥面板焊趾处疲劳性能,正交异性钢桥面板U肋内焊技术成功应用于武汉沌口长江公路大桥工程中。此外,结合U肋内焊技术,提出了U肋与横隔板交叉处新构造方案,以期全面提升正交异性钢桥面板疲劳耐久性。  相似文献   

9.
结合正交异性钢桥面板的足尺模型试验和有限元数字分析方法,研究和探讨正交异性钢桥面板的疲劳强度和疲劳裂纹.通过静载和动载试验,研究纵向U肋与横梁接缝的应力特点和疲劳裂纹特性.用应变能密度因子方法分析疲劳裂纹的扩展,研究在裂纹尖端设止裂孔的裂纹维修方法的有效性.  相似文献   

10.
正交异性钢桥面板是大跨度桥梁结构主要桥面板形式.为深入研究车辆轮迹线位置对钢桥面板疲劳部位应力的影响,以纵肋与顶板双面焊焊接接头为研究对象,基于ANSYS有限元软件,选取三种典型疲劳车辆轮迹线加载形式,得到了该部位热点应力历程.车辆骑纵肋加载和纵肋间加载均具有较大的疲劳应力,设计时应将轮迹线尽量布置在纵肋正上方位置.  相似文献   

11.
为研究50 mm厚EA10环氧沥青混凝土铺装层温度对正交异性钢桥面板U肋与顶板构造疲劳致损效应的影响,开展带沥青混凝土铺装层的正交异性钢桥面板足尺节段模型拟静力循环加载试验。分析不同铺装层温度下正交异性钢桥面板顶板的横向应变、挠度以及U肋与顶板构造的局部热点应力响应,在此基础上,对不同铺装层温度下U肋与顶板外侧焊趾疲劳损伤进行研究。结果表明:常温(25℃)条件下,采用沥青混凝土铺装层可降低钢桥面板顶板35.2%的横向应力和10.3%的局部挠度,以及U肋与顶板双面焊构造外侧顶板焊趾区域的应力幅值和疲劳损伤;随着沥青混凝土铺装层温度升高,顶板横向应力、挠度及U肋与顶板双面焊构造外侧顶板焊趾区域的应力幅值、疲劳损伤显著增大,高温(60℃)条件下该区域疲劳损伤度增幅可达41.5%。  相似文献   

12.
《公路》2015,(7)
在车辆荷载作用下,正交异性钢桥面板的疲劳开裂对结构的疲劳性能以及使用安全性能具有较大的影响,钢桥面板中复杂的焊接连接细节成为裂纹出现的集中区域。依据在正交异性钢桥面板方面研究相对成熟的AASHTO、Eurocode和日本规范,结合我国公路钢结构桥梁设计规范(送审稿);通过数值分析得到疲劳敏感细节在各国标准疲劳车辆荷载下的应力响应,并按照规范对细节的疲劳强度进行验算。验算结果表明,疲劳细节的应力幅对轴重比较敏感;顶板与U肋细节的纵向影响线比横隔板与U肋焊接处的影响线短;顶板与U肋处细节和横隔板挖孔处细节更容易发生疲劳裂纹。  相似文献   

13.
为了解新型大纵肋钢-超高性能混凝土(UHPC)正交异性组合桥面板对传统正交异性钢桥面板的受力性能的改善效果,以港珠澳大桥深水区非通航孔6×110m连续钢箱梁桥为背景,建立全桥有限元模型,对2种桥面方案的静力性能进行对比,建立节段有限元模型,对比2种桥面方案U肋与顶板连接焊缝处的疲劳性能,并分析U肋开口宽度和UHPC结构层厚度对大纵肋钢-UHPC正交异性组合桥面板疲劳性能的影响。结果表明:2种桥面方案下钢箱梁控制点的位移和应力相差不大,所提出的大纵肋钢-UHPC正交异性组合桥面板在中等跨度连续梁桥中具有较好的适用性;大纵肋钢-UHPC正交异性组合桥面板的疲劳性能显著优于传统正交异性钢桥面板;增大U肋开口宽度会导致U肋与顶板连接焊缝应力幅增加,增加UHPC结构层厚度能显著降低U肋与顶板连接焊缝应力幅。  相似文献   

14.
为了分析正交异性桥钢面板中桥面板与U肋焊接部位应力分布规律,以宁波市象山港大桥钢箱梁为研究背景,利用Midas Civil及Midas FEA建立全桥整体及钢箱梁局部节段有限元模型,采用现行《公路钢结构桥梁设计规范》(JTG D64-2015)中的疲劳荷载车模型,依次计算焊脚处桥面板、U肋的纵横向应力及其应力幅,并与现场实测数据进行比较和分析。分析结果表明:疲劳正应力计算结果满足规范要求;疲劳荷载作用下,焊脚处桥面板、U肋纵向应力的交变循环作用对正交异性钢桥面板的疲劳寿命影响更为显著,而横向应力对焊脚处裂缝的产生及发展有一定影响;局部轮压对桥面板应力的影响较大,应以最不利布置(HX2)进行设计计算。  相似文献   

15.
正交异性钢桥面板的疲劳问题属于多疲劳失效模式下的结构体系疲劳问题,为研究其结构体系的疲劳失效模式和疲劳抗力,以典型的正交异性钢桥面板为研究对象,提出基于主导疲劳失效模式的结构体系疲劳抗力评估方法。由正交异性钢桥面板的重要疲劳失效模式入手,设计3组共8个足尺节段模型,通过疲劳试验研究确定纵肋与顶板焊接细节和纵肋与横隔板交叉构造细节的重要疲劳失效模式及其实际疲劳抗力;基于所提出的结构体系疲劳抗力评估方法,探讨引入镦边纵肋和双面焊等新型构造细节条件下正交异性钢桥面板结构体系的疲劳抗力问题。研究结果表明:纵肋与顶板焊接细节主导疲劳失效模式为疲劳裂纹萌生于焊根并沿顶板厚度方向扩展,而纵肋与横隔板交叉构造细节主导疲劳失效模式为疲劳裂纹萌生于端部焊趾并沿纵肋腹板扩展;初始制造缺陷会显著降低正交异性钢桥面板重要疲劳失效模式的疲劳抗力并导致疲劳失效模式迁移;对于正交异性钢桥面板的结构体系而言,引入新型镦边纵肋与顶板焊接细节无法提高结构体系的疲劳抗力;而引入纵肋与顶板新型双面焊细节,可使结构体系的主导疲劳失效模式迁移至顶板焊趾或纵肋与横隔板交叉构造细节,结构体系的疲劳抗力得到显著提高。  相似文献   

16.
为保证广州明珠湾大桥主桥疲劳性能及寿命满足要求,根据该桥正交异性钢桥面板设计尺寸和构造,采用与施工现场相同焊接条件,制作8个足尺单U肋模型并进行疲劳试验,确定桥面板的疲劳破坏关注点及其疲劳寿命曲线;建立桥面板有限元模型,分析实际车辆荷载作用下桥面板的疲劳力学性能,并根据名义应力法确定该桥钢桥面板的疲劳寿命。结果表明:桥面板U肋与顶板焊接位置、U肋与横隔板围焊位置为疲劳易损部位,循环次数为5×106次时,两处常幅疲劳极限分别为42.04 MPa和60.30 MPa;桥面板U肋与顶板焊接位置最大应力幅为14.02 MPa,小于常幅疲劳极限,可不考虑疲劳寿命;U肋与横隔板围焊位置最大应力幅为64.73 MPa,大于常幅疲劳极限,桥面板疲劳寿命为158年,满足大桥设计基准期100年的要求。  相似文献   

17.
正交异性钢桥面板往往在焊缝及其附近位置出现过早的疲劳损伤问题。考虑到这一结构形式所含的大量焊接接头,对其中的随机初始裂纹及气孔、夹杂等焊接缺陷对疲劳性能的影响展开研究。首先,利用扩展有限元法在求解几何不连续问题方面的高效性,生成了大量含随机缺陷的代表体积元;而后基于等效裂纹扩展长度准则,对随机缺陷进行了均质化处理,并通过数值算例证明了其在早期裂纹扩展中的适用性。作为重要的多尺度方法之一,该均质化方法可用于计算正交异性钢桥面板焊接接头的裂纹扩展。根据某正交异性钢桥面板的典型车辆荷载的现场实测数据,结合欧洲规范建议的年车流量及轮载横向分布,采用均质化的模型对U肋-顶板焊趾的宏观裂纹形成寿命(初始裂纹扩展至可检测尺度的寿命)进行了计算。结果表明:该方法可有效呈现宏观裂纹形成寿命的概率分布,但在现有假设下,初始裂纹尺度的影响明显高于气孔、夹杂等缺陷;若初始裂纹尺度呈均匀分布,将导致宏观裂纹形成寿命的分布较为离散;所得结果的统计特性依赖于所选择的Paris公式形式及其中的材料常数取值。  相似文献   

18.
正交异性钢桥面板疲劳问题突出,纵肋与顶板焊缝处是其关键疲劳易损部位,研究该部位疲劳裂纹的扩展过程并确定关键影响因素及其效应,有助于深刻理解其疲劳损伤机理。建立正交异性钢桥面板疲劳试验节段模型的有限元分析模型,将纵肋与顶板焊缝焊根处的疲劳裂纹近似为半椭圆形裂纹,基于断裂力学实现其扩展全过程的三维数值模拟。在此基础上研究初始裂纹的纵向位置和初始裂纹形状对疲劳裂纹扩展过程的影响,阐明扩展过程中的疲劳裂纹的形状变化,以及疲劳裂纹关键部位应力强度因子幅值的变化规律。研究表明:对于典型的正交异性钢桥面板纵肋与顶板焊缝,在纵向一段范围内,初始裂纹的纵向位置对裂纹扩展的影响不大;初始裂纹形状对裂纹扩展的影响主要体现在裂纹扩展的初始阶段,经过一段时间的扩展之后,不同形状的初始裂纹将演变为相对稳定的形状;持续一段时间后,裂纹将逐渐变得较为扁长;疲劳裂纹在深度方向上扩展超过约顶板厚度一半时,最深点的扩展速率将会减慢;深度相同的裂纹,形状越扁长时越倾向于向深度方向扩展,越不扁长时越倾向于向长度方向扩展。  相似文献   

19.
<正>交异性钢桥面板构造复杂,其疲劳性能由各疲劳细节共同决定,既有规范推荐的寿命评估方法已不能满足设计要求。为准确评估其疲劳寿命,引入热点应力法,根据Eurocode规范确定疲劳检算加载工况和荷载谱;采用国际焊接协会IIW推荐的外推方法,计算其关键易损部位热点应力谱;采用泄水法对热点应力谱进行分析,通过热点应力S~N曲线和线性累积损伤理论计算其寿命。以某城市立交桥典型正交异性钢桥面板为研究对象,采用热点应力法评估其疲劳寿命。结果表明:该桥的疲劳寿命为103年,满足设计要求且有一定安全储备量;与名义应力法相比,热点应力法能够有效避免复杂应力状态下名义应力难以定义的问题,更适用于正交异性钢桥面板的寿命评估。  相似文献   

20.
鞠晓臣 《中国公路学报》2019,32(11):176-183
正交异性桥面板U肋-面板焊接接头为疲劳裂纹多发部位,为了提高U肋-面板焊接接头疲劳性能,分析目前规范中对该构造细节的疲劳设计要求以及疲劳问题依然存在的原因,在目前主要采用部分熔透焊形式的背景下,考虑引入全熔透焊接以期达到提高疲劳性能的目的。研究围绕一种全新的U肋-面板全熔透焊接接头的疲劳性能分别开展构造细节和节段足尺模型试验研究。试验结果表明:全熔透疲劳裂纹都是始于U肋内侧焊趾处,沿着U肋腹板厚度方向发展,部分熔透焊裂纹主要始于未熔透焊缝的焊根部位,沿焊喉方向发展,直至贯通整个焊喉,且在同样加载条件下,全熔透焊裂纹产生的加载次数明显高于部分熔透焊;全熔透焊的热点应力试验测试值与理论计算值基本一致,U肋焊趾部位应力集中明显,内侧受拉外侧受压,解释了疲劳裂纹起始点为U肋焊趾内侧;经回归计算得到热点应力疲劳强度为263.8 MPa;将足尺节段疲劳试验加载幅度对应的加载次数换算为公路桥梁规范单车轮轮载60 kN所对应的加载次数,2个试件加载次数都超过1.2亿次,且U肋-面板全熔透焊接接头依然没有疲劳裂纹产生,表明U肋-面板全熔透焊接接头具备优良的抗疲劳性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号