首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
为更好地研究车辆跟驰特性,缓解道路交通拥堵,在车辆跟驰行为受前导车和道路环境等影响的基础上,将单车道道路虚拟为一维管道,道路上的跟驰车辆抽象成相互作用的分子。考虑需求安全距离和期望速度2个影响因素,基于分子动力学构建车辆相互作用势和分子壁面势函数,并建立基于相互作用势函数的分子跟驰模型,给出跟驰车辆的加速度模型。在实际交通环境中建立视频采集试验路段,采集试验路段不同点位的交通流样本,从视频中获得模型所需数据,并将数据分为两部分,一部分用于参数标定,其余用来模型验证。将车辆运行状态分为常态行驶、起动加速和减速停车3种。根据实测交通数据分别对3种车辆运行状态下的经典GM模型和分子跟驰模型进行参数标定,选取3种不同运行状态下的试验数据各3组,代入标定后的分子跟驰模型与经典GM模型计算模型输出加速度,并与实测加速度进行误差分析对比,结果表明,分子跟驰模型输出加速度与实测加速度之间的误差,总体上比经典GM模型要小,而且根据绝对误差方差显示,分子跟驰模型较经典GM模型稳定性更高。选取有代表性的一组跟驰过程进行数据绘图,对比可以看出分子跟驰模型输出加速度与实测数据变化趋势几乎一致,其拟合效果比经典GM模型更好。  相似文献   

2.
为有效刻画未来智能网联环境下车辆在换道过程中面临的驾驶风险,保证车辆执行更加安全的换道决策,建立基于安全势场理论的车辆换道模型。首先针对车辆换道过程中所遇到的驾驶风险进行评估,利用势场理论给出车辆行驶过程中不同运动状态下安全势场的空间分布。其次根据换道过程中相关车辆不同安全势场分布情况计算出换道结束时的车间临界距离,相比于传统的车间临界距离计算模型,提出方法能够动态刻画出车辆在不同速度、加速度条件下临界距离的变化趋势,并且能够根据车辆不同的运动状态,动态表达出车辆间临界距离的变化。在此基础上,根据智能网联环境下车辆各类运动状态能够被实时感知的特点,总结出车辆各类运动状态下需要的换道安全临界时间,最终建立基于安全势场理论的最小安全距离换道模型。最后,对模型进行数值仿真分析,仿真结果表明:车辆换道所需要的最小纵向安全距离与换道车辆以及其周围车辆的运动状态有着直接关系。在今后趋于成熟的智能网联环境下,该模型可以进一步进行扩展,利用安全势场的分布情况,对车辆换道过程进行动态实时干涉,能够为今后智能网联环境下车辆协同换道、车辆自动驾驶以及车辆群体优化控制等相关研究提供一定的理论支撑。  相似文献   

3.
根据某种机理建立的交通流模型需要通过模型标定和验证后才能具体应用到实际中.通过采用视频处理技术,对陕西省西安市二环主干路和浙江省舟山市昌洲大道上上下高峰时期内的车辆微观运动录像进行技术处理,提取得到了包括位移、速度和加速度的车辆微观运动轨迹数据.根据这些交通流数据,采用Levnberg-Marquardt算法,分别对跟驰理论中2个典型的跟驰模型,即惯性模型中的敏感系数、安全时间间隔、最小安全车间距、允许速度和智能驾驶人模型中的理想速度、安全时间间隔、静止安全距离、启步加速度和舒适加速度进行了标定和验证.针对惯性模型,当允许速度大于实际速度时,位移均方差和速度均方差的平均值分别为2.8m和0.58 m/s,当允许速度小于实际速度时,位移均方差和速度均方差的平均值分别为2.22m和0.49 m/s;针对智能驾驶人模型,利用早、中、晚3组数据进行标定,得到的位移均方差和速度均方差的平均值分别为0.12m和0.10 m/s,0.07m和0.10 m/s,0.75m和0.27 m/s.因此,惯性模型与智能驾驶人模型都可用于描述城市主干路近饱和状态(即跟随车辆的最大速度远小于允许速度的行驶状态)下的车辆跟驰行为,而且当智能驾驶人模型中的加速度指数取较大的值时,它较前者更为适合.   相似文献   

4.
《公路》2021,66(10):229-235
智能网联车辆(Intelligent and Connected Vehicle,ICV)跟驰模型是研究ICV交通流特性的基础模型,针对ICV跟驰模型的建模及交通流特性开展研究。分析现有ICV跟驰模型存在的缺陷,考虑模型结构简洁且参数物理意义明确的特性,提出新的ICV跟驰模型。理论推导本文ICV跟驰模型以及原跟驰模型的基本图函数关系式,对比分析通行能力的影响,考虑周期性边界条件,设计数值仿真实验,仿真分析ICV的混入对混合交通流稳定性的影响。研究结果表明:本文所提ICV跟驰模型能够克服原模型通行能力受恒定车头时距影响较大的缺陷,相比原模型而言,本文ICV跟驰模型通行能力随自由流速度的变化幅度较显著,与实际车流运行特性相符合,同时,ICV有利于混合交通流稳定性的提升,当ICV比例达到60%时,混合交通流由不稳定状态转变为稳定状态。研究结果论证了所提ICV跟驰模型具备良好的模型特性,可为智能网联环境下的交通流特性分析提供模型参考。  相似文献   

5.
为了评估既有跟驰模型在仿真中国驾驶人跟驰行为方面的表现,对5种代表性跟驰模型进行参数标定与效果验证。基于"上海自然驾驶研究项目"采集的60位驾驶人、累计超过16万km的实际驾驶行为数据,根据雷达、车辆总线数据自动提取2 100个城市快速路稳定跟驰行为片段;采取5-折交叉验证法划分标定与验证数据集,即将每位驾驶人的50个跟车片段随机划分成5个不相交的子集(每个子集包含10个跟车片段),其中4个子集作为标定数据集,剩下的1个作为验证数据集,依次轮换标定数据集与验证数据集5次,展开5次模型标定与验证。基于标定数据集,采用遗传算法对Gazis-Herman-Rothery、Gipps、智能驾驶人、全速度差(FVD)以及Wiedemann模型进行参数标定;基于验证数据集,评估5种模型在预测两车间距方面的精度。结果表明:FVD模型在5种模型中表现最佳,具有最小的误差(21%)和误差标准差;相对于微观交通仿真软件VISSIM中所采用的Wiedeman模型,FVD模型具有精度高、易于标定、对不同驾驶人鲁棒性强3个优势,更加适应于仿真中国驾驶人的跟驰行为。研究结果对于开发适合于中国驾驶人与道路交通环境特征的跟驰模型及微观交通仿真系统具有重要价值。  相似文献   

6.
梁军  王军  杨云庆  陈龙  盘朝奉  鲁光泉 《汽车工程》2021,(2):189-195,203
针对当前混行交通流场景下网联车对前车速度变化的实时性、安全性和车队稳定性较差的状况,提出一种由生成模型和辨别模型构成的网联车生成式对抗网络车辆跟驰模型(GANVFM)。其中,生成模型提取跟驰参数中的前车速度、跟驰车速和相对车距计算生成加速度;辨别模型对生成模型生成的加速度参数进行相似度计算,并通过更新函数加以更新。采用速度和加速度的均方差σ、追尾预测因子γn和跟驰状态因子φn作为对应的指标,对车辆的实时性、安全性和车队的稳定性进行分析。实验结果表明:GANVFM的σ和γn均最小,GANVFM对前车速度变化的实时性和安全性高;随着网联车渗透率δ的升高,φn降低、车队长度缩短,车队稳定性提高。  相似文献   

7.
车头时距是表征交叉口通行能力的主要参数。为探讨网联自动车混行状态下交叉口的通行能力,通过网联自动车跟驰模型推导通过停止线的安全车头时距,分析混行状态下4种跟驰行为,针对是否考虑前车类型,基于概率模型构建混合交通流背景下交叉口通行能力模型,通过参数标定分析网联自动车速度、车头时距、渗透率及信号控制对交叉口通行能力的影响,其中人工驾驶车辆的相关参数和模拟场景中涉及的数据均为实测所得。结果表明,网联自动车速度增加、车头时距减小、渗透率增加、不考虑前车类型都会提升交叉口的通行能力,混合交通流背景下提升交叉口通行能力的根本原因在于车辆通过停止线的均衡态车头时距减小;交叉口受信号控制时的均衡态车头时距越小,通行能力降低幅度越显著。  相似文献   

8.
考虑到跟驰车流中前车车型对智能汽车跟车行为的影响,采用长短期记忆 (Long Short Term Memory,LSTM)神经网络,基于 NGSIM 数据集,通过 One-Hot方法编码车型特征,并引入注意力机制 (Attention Mechanism) 生成输入特征的注意力权重,训练并建立了一种可根据前车车型产生不同跟驰行为的智能车辆跟驰模型 (Identifiable Vehicle Type Car-Following Model,IVT-CF)。在不同前车车型的跟车场景中仿真发现,IVT-CF 模型仿真车辆的速度和位移的均方误差 (Mean Square Error,MSE) 比不分车型的 LSTM 模型分别降低了 23.8%、31.7%,比 IDM 模型分别降低了 15.8%、18.7%,仿真精度更高。在混入大型车辆的车队跟驰场景仿真中发现,交通流速度和车头间距的收敛时间为 92 s,该模型能较快收敛,具有较好的稳定性和抗干扰能力。  相似文献   

9.
利用五轮仪实验数据建立车辆跟驰模型   总被引:1,自引:3,他引:1  
车辆跟驰模型是微观交通流模拟的一个基本模型,用来分析和描述在无法超车的同一车道上一辆车(驾驶员)跟随另一辆车的方式。由于实际道路上驾驶员信息的获取困难,建立的车辆跟驰模型难以标定或验证。本文利用五轮仪试验系统获取的车辆跟驰数据,应用BP神经网络,建立了车辆跟驰神经网络模拟模型。  相似文献   

10.
秦严严  王昊  王炜 《中国公路学报》2018,31(11):147-156
LWR(Lighthill,Whitham and Richards,LWR)模型可推演交通流宏观状态演化过程,在智能网联环境下混有协同自适应巡航控制(Cooperative Adaptive Cruise Control,CACC)车辆混合交通流LWR模型的研究,可为该混合交通流的宏观动力学特性分析提供理论工具。应用加州伯克利PATH真车试验验证的CACC模型作为CACC车辆跟驰模型,采用智能驾驶人模型(Intelligent Driver Model,IDM)模拟驾驶人在智能网联环境中的"智能"驾驶特性。基于不同CACC车辆比例下的混合交通流基本图,证明混合交通流基本图的切线斜率为交通波在混合车队中传播的波速,建立混合交通流LWR模型的一般性解析框架,得到混有CACC车辆的混合交通流LWR模型。最后,针对LWR模型冲击波特性,在6组平衡态条件下进行数值仿真试验。研究结果表明:所建立的混合交通流LWR模型可较好地描述不同CACC车辆比例时冲击波在混合车队中的传播波速;冲击波波速理论值与仿真均值的相对误差基本控制在10%以内,当冲击波处于由正向波转变为反向波的过渡阶段时,相对误差较大,为19%~26%,但绝对误差仍然较小。研究结果一方面可为混有CACC车辆的交通流宏观状态演化提供理论参考,具有推动该混合交通流其他宏观模型研究进展的积极作用;另一方面,建立的混合交通流LWR模型解析框架能够适应CACC车辆与人工-网联车辆跟驰模型选取的多样性,同时可为其他类型混合交通流LWR模型的建立提供理论支撑。  相似文献   

11.
信号交叉口是影响交通系统运行安全和效率的关键。在国家新基建战略的提出以及车路协同技术不断发展的环境下,合理设置网联自动驾驶车辆(Connected and Autonomous Vehicle,CAV)专用进口道,对信号交叉口进口道处不同网联类型的车辆进行科学的交通组织,能够提高交叉口的通行能力,降低行车延误,促进城市交通系统效率与安全的双提升。建立协同自适应巡航控制(Cooperative Adaptive Cruise Control,CACC)车辆跟驰模型和GM (General Motor)模型分别描述混行环境下网联车辆与非网联车的跟驰行为,以提高进口道通行能力、降低延误和油耗为优化目标,采取敏感度分析方法,提出不同CAV比例、进口道车道数、交通量和信号配时方案组合情况下CAV专用进口道的动态设置条件,适用于不同交通状况的信号交叉口,具有较强的普适性。数值仿真结果表明:采用该方法设置CAV专用进口道能够提高混行信号交叉口的通行能力、降低延误和车均油耗;在实际应用时,可视交叉口类型和交通智能化程度灵活选取CAV专用进口道设置方式,为混行交通流环境下交叉口进口道的交通组织优化提供理论依据和模型支持,对车路协同系统的相关研究具有参考意义。  相似文献   

12.
自适应巡航(ACC)和协同式自适应巡航(CACC)等自动驾驶技术正逐渐进入市场,未来一段时间内道路交通流将由人工驾驶车辆与不同等级、不同形式的自动驾驶车辆混合构成。为分析ACC和CACC对交通流的影响,利用实测交通数据NGSim建立人工驾驶车辆跟驰模型,并在综合已有ACC和CACC模型的基础上,提出基于安全间距的自动驾驶跟驰行为模型,进而得出不同ACC,CACC车辆渗透率下交通流的基本图模型。研究结果表明:自动驾驶可以提升交通容量;与ACC车辆比例ra相比,CACC车辆比例rc对交通容量的影响更为显著;当rc>0.5时,饱和流量快速增加,当rc=1时,饱和流量约为纯人工驾驶时的2倍。进一步,通过仿真考察车辆在车队中的跟驰响应和交通流在瓶颈处的运行情况。研究结果表明:自动驾驶改善了交通流的动态特性,对存在跟驰关系的连续车流来说,自动驾驶使得后车可以更加及时地响应前车的行为,车流会在更短的时间内进入稳态;在交通瓶颈处,自动驾驶降低了拥堵程度,提高了阻塞发生的临界流量。总体来看,自动驾驶对交通流静态和动态性能均有所提升,特别是在协同式自动驾驶场景下,车辆行为更加协调一致,交通流表现出良好的抗扰性,进一步验证了车路协同对自动驾驶的意义。  相似文献   

13.
提高人类驾驶人的接受度是自动驾驶汽车未来的重要方向,而深度强化学习是其发展的一项关键技术。为了解决人机混驾混合交通流下的换道决策问题,利用深度强化学习算法TD3(Twin Delayed Deep Deterministic Policy Gradient)实现自动驾驶汽车的自主换道行为。首先介绍基于马尔科夫决策过程的强化学习的理论框架,其次基于来自真实工况的NGSIM数据集中的驾驶数据,通过自动驾驶模拟器NGSIM-ENV搭建单向6车道、交通拥挤程度适中的仿真场景,非自动驾驶车辆按照数据集中驾驶人行车数据行驶。针对连续动作空间下的自动驾驶换道决策,采用改进的深度强化学习算法TD3构建换道模型控制自动驾驶汽车的换道驾驶行为。在所提出的TD3换道模型中,构建决策所需周围环境及自车信息的状态空间、包含受控汽车加速度和航向角的动作空间,同时综合考虑安全性、行车效率和舒适性等因素设计强化学习的奖励函数。最终在NGSIM-ENV仿真平台上,将基于TD3算法控制的自动驾驶汽车换道行为与人类驾驶人行车数据进行比较。研究结果表明:基于TD3算法控制的车辆其平均行驶速度比人类驾驶人的平均行车速度高4.8%,在安全性以及舒适性上也有一定的提升;试验结果验证了训练完成后TD3换道模型的有效性,其能够在复杂交通环境下自主实现安全、舒适、流畅的换道行为。  相似文献   

14.
连续的跟驰行为和换道行为是驾驶行为的主要构成部分,对交通拥挤和交通事故有着重要影响。通过无人机视频拍摄和图像处理方式,提取了曹安公路沿线的2个交叉路口间正常交通流状态下共600条多车高精度轨迹数据。首先,考虑车辆类型对驾驶行为产生直接的影响,分析了大车和小车的车辆轨迹特征变量分布的差异性,包括速度、加速度、碰撞时间倒数、车头时距等,在标记危险驾驶行为的过程中考虑车辆类型的影响。其次,针对不同的车辆类型,利用修正碰撞裕度对跟驰行为和换道行为进行风险性评估,将其划分为安全型和风险型。根据风险型行为发生的顺序以及持续时间,评估驾驶人的整体驾驶状态是否危险,作为危险驾驶行为识别的样本标记。分别利用离散小波变换和统计方法提取车辆轨迹的关键特征参数,为了提高模型识别效率,将关键特征参数进行排序,从而确定最优判别指标;最后,利用轻量梯度提升机(LGBM)算法对危险驾驶行为进行识别,并与随机森林、多层感知器、支持向量机等算法在精度上进行比较。研究结果表明:在上述研究条件下,LGBM算法对危险驾驶行为的理论识别率最高可达93.62%,可以实现基于机器学习算法的危险驾驶行为的高精度自动识别,该结果对于智能驾驶辅助系统的设计、道路交通安全决策的制定具有显著的意义。  相似文献   

15.
随着中国新基建战略的提出及自动驾驶和网联通信技术的不断发展,网联自动驾驶车辆(CAV)、自动驾驶车辆(AV)和常规人驾车辆混行的交通流将在未来长时间存在。建立适用于网联自动驾驶车辆、自动驾驶车辆和常规人驾车辆3种类型车辆的混流跟驰模型,考虑多前后车车头间距、多前车速度差、加速度差、与主体车辆的相对距离等因素,并进行典型场景的数值仿真。刹车和起步过程的3种混流数值仿真结果显示,模型在几种典型混行场景下均具有可行性,车辆的加速度和速度变化更为平缓。不同CAV比例下的数值仿真结果显示,车队中CAV比例越高,车队整体恢复至平稳状态的时间越短,波动幅度越小。CAV均质流数值仿真结果表明,与MHVAD模型相比,该模型不稳定区域减小33.8%,所控制的车队速度波动幅度减小14%。CAV与AV混流的数值仿真结果显示,与PATH实验室模型相比,由该模型控制的车队加速度进入相对稳定状态提前5.5 s。该模型可用于不同车辆均质流及3种车辆混行的队列控制,在目前开展混行实车试验困难的情况下,也可应用该模型进行混行跟驰仿真,从而为混行交通流的道路交通管理及基础设施布设提供理论依据和模型支持。  相似文献   

16.
In order to capture drivers’ car-following characteristics and apply this information to the design of an Adaptive Cruise Control algorithm, this paper builds a driver car-following model with vehicle speed-dependent control gains. Proposed for use with heavy-duty truck drivers, we introduced the concept of driver sensitivity to tracking errors, identified driver’s sensitivity to tracking errors and analyzed quantitatively the relationship between control gain and vehicle speed. To model the driver characteristics precisely and concisely, a SVE/SDE (Sensitivity to Velocity Error/Sensitivity to Distance Error) based linear car-following model was built and a nonlinear optimization algorithm was adopted to identify the model parameters. When validating the model accurancy, we proposed a comparative verification method based on hypothesis-testing theory here to reduce the influence of randomicity in the drivers’ manipulation. The modeling and verification indicate that the proposed car-following model is superior to the tranditional linear car-following model, but its structure still approximates linear, which implies it is applicable for the design of a vehicular following controller.  相似文献   

17.
针对现有的车速引导模型存在未综合考虑车辆跟驰行为、引导场景划分较粗略等问题,研究了4种基于车路协同环境下实时优化各车的车速引导模型。对车辆进行所属车辆列队划分,考虑车速引导影响对FVD跟驰模型进行改进。以车辆列队为引导单元,将车辆可能面临的交通状况细分为8种引导场景,以引导车辆不停车或少停车通过交叉口为目标,直接优化车辆加/减速度,建立车辆列队后车根据改进的跟驰模型计算目标跟驰加/减速度,并与头车组成列队以同一目标车速通过交叉口停车线的4种车速引导模型。以南昌市海棠北路/枫林西大街交叉口为例进行仿真验证,结果表明,所提出的车速引导模型能使车辆行程时间减少18.9%,最大排队长度减少58.8%,延误减少60.8%,燃油消耗减少36.4%,且适用于不同交通饱和状态,对提高信号交叉口通行效率和减少车辆燃油消耗有显著效果。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号