首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
为了适应日益严格的排放法规,并满足燃用多种燃油的需求,柴油机制造商一直致力于减少喷油量和喷油定时的偏差。介绍了智能精度改进技术(i-ART)系统,这是一种可显著缩小偏差的方式。i-ART系统包含1个安装在喷油器内部的燃油压力传感器。该系统用1个专为压力波形分析设计的微型计算机计算高速下的喷油量和喷油定时。喷油器可直接测量每次喷射的喷油压力波形,因此,可在任意时刻补偿喷油量和喷油定时的偏差。丰田汽车公司已经在巴西市场引入该系统。2012年,巴西推行了PROCONVE L6排放法规,该市场目前使用多种类型的柴油。i-ART系统可使柴油机满足新排放法规的要求,并且,通过采用低压缩比和3次预喷射控制,显著降低燃油耗。此外,利用i-ART系统特性开发了十六烷值检测控制。因此,即使车辆采用过低或过高十六烷值的柴油,根据检测到的十六烷值,也可通过调整发动机标定获得相同的燃烧噪声水平。安装这一系统的发动机达到了新排放法规的要求,并且,可与巴西使用的各种柴油相容  相似文献   

2.
根据发动机稀薄燃烧的要求,采用16位单片机MC9S12XDP512微控制器,利用其增强型输入捕捉输出比较定时器,自主开发出电控系统。采用稀燃、快燃(滚流)、推迟点火和二次喷油的可控燃烧方案,改变二次喷油比例和二次喷油时刻等参数,实现二次喷油过程的优化,在气流运动的作用下,实现了发动机稀薄燃烧复杂时序控制,明显改善燃烧过程。在稀薄燃烧发动机典型工况下,空燃比越大,二次喷油比例对燃油经济性的改善越明显。  相似文献   

3.
高强化柴油机双卷流燃烧系统喷油参数匹配试验研究   总被引:1,自引:0,他引:1  
针对采用双卷流燃烧系统的单缸柴油机进行了强化燃烧试验研究,研究内容包括不同喷雾锥角燃烧特性试验和相同负荷下不同转速的燃烧特性试验。研究发现,柴油机喷雾锥角的合理设计对燃烧特性具有重要影响,提高转速是提高柴油机强化程度的有效途径,但是转速提高会带来排温升高及燃油经济性恶化等问题。通过调节喷油定时可以在提高发动机转速时使排温及燃油经济性的问题在一定程度上得以改善。采用双卷流燃烧系统并配以合适的喷油参数(喷雾锥角、喷油定时)可以达到提高柴油机强化程度的目的。  相似文献   

4.
中型和重型柴油机的发展趋势   总被引:1,自引:0,他引:1  
本文从燃烧系统选型、增压的峰值燃烧压力、扭矩储备及复合循环、燃烧室尺寸、压缩比、燃油系统及喷油定时、降低噪声、性能等方面剖析了中型和重型柴油机的研制工作。  相似文献   

5.
概述了柴油机电控喷油技术的发展、电控喷油系统的技术特点和分类;分析了各种电控喷油系统的优缺点,指出高压共轨系统以其结构紧凑,喷油压力的选择不受柴油机转速、负荷和燃油喷射量的影响,能实现喷油量、喷油定时和喷油率的灵活控制而成为未来柴油机燃油系统的主要发展方向。  相似文献   

6.
<正> 泼金斯公司的双级弹簧喷油嘴安装在排量为2L级的直喷式柴油机上。这种新型喷油系统由鲁卡斯柴油机厂生产,它降低了发动机的燃烧噪声和有害的废气成份。双级弹簧喷油嘴在两种不同的相位下供  相似文献   

7.
针对HCCI燃烧在大负荷时的局限性,开发了基于电控燃油喷射定时和EGR率的车用柴油机双燃烧模式,即在小、中负荷工作时,采用均质压燃预混合燃烧,在大负荷时,采用传统的扩散燃烧模式,克服了均质预混合燃烧模式大负荷性能差的缺点。试验研究了在HCCI区域喷油提前角与EGR率对柴油机性能的影响及二者在HCCI区域的协同作用。分析了HCCI燃烧的缸压和放热率。通过油量MAP与喷油定时MAP的优化和爆震扭矩值确定了双燃烧模式工作下的HCCI扭矩范围及过渡区域扭矩线。试验结果表明:采用电控VP37泵与电控废气再循环系统相结合,通过增大喷油提前角的方式,在一定的负荷范围内实现了准HCCI燃烧,NOx与炭烟排放同时降低;在大负荷范围内采用常规燃烧方式,使CA4D32TC柴油机实现了双燃烧模式工作,具有较好的性能指标。  相似文献   

8.
用户将越来越偏重于根据整个使用期的费用来挑选发动机,而上述费用中的大部分是运行费。今后,要求发动机必须能够燃用多种规格的燃料。据燃烧理论指出,高喷油压力与容易改变喷油定时的结合,可以改善效率。而在很高的油管压力下工作时,传统的喷油装置有一些局限性。 下面介绍一种新的系统。它保留了用凸轮和滚轮使喷油泵工作的技术,又采用一个电磁控制阀来代替油孔及螺旋槽结构。控制阀的工作程序由电子控制,可以迅速调节转速和控制喷油定时,现已进行的发动机试验证明,大大地提高喷油压力可明显地改善燃油经济性。在发动机其它工况下进行的计算机模拟予测性能表明有类似的改进潜力。在喷油图形状对发动机部分负荷运转的影响方面,理论上也表明有获得改善的可能性。 该系统提供的高喷油压力和喷油定时控制的特点给发动机制造厂开辟了设计的新领域。  相似文献   

9.
本文介绍了一种高压喷油装置,并研究了在高喷油压力下的燃油喷雾特性。将该装置用于2L单缸非增压柴油机上进行了试验。试验表明,在对燃烧室系统参数选择后,高压喷油在燃烧方面有所改进,排放显著降低。  相似文献   

10.
详细分析了油轨总成的结构和喷油噪声产生的原因,针对性地提出了多种降低喷油器和油轨噪声的措施。在一实例中,采取减轻针阀质量和改变油轨壁厚与截面形状的方案,将喷油噪声降低了7.4dB(A),解决了喷油噪声大的问题。  相似文献   

11.
柴油机高压喷射和喷油速率控制   总被引:4,自引:1,他引:4  
本文介绍了柴油机高压喷射和喷油速率控制方面的最新发展情况,综述了喷油速率控制的技术方法,指出高压喷射、可变喷油定时及喷油达率柔性控制是柴油机燃油喷射系统的发展方向。  相似文献   

12.
林静 《汽车与配件》2000,(33):20-21
在严格的废气排放限值的压力下,发动机制造商改变了以往的喷油方案。研究人员开始致力于日益提高喷油压力的新系统。 一、喷油系统 喷油系统是高速直喷式柴油机燃烧系统中最关键的部分,也是为达到最佳排放控制而改进燃烧的主要对象。对于未来高速直喷式柴油机,提高喷油压力和改善喷油率曲线形状很重要。  相似文献   

13.
对对置活塞二冲程缸内直喷汽油机缸内流动、混合气形成和燃烧过程进行数值模拟,以研究喷油定时和点火定时对混合气的形成、燃烧过程和整机性能的影响。结果表明:随着喷油提前角的增大,火焰发展期缩短,快速燃烧期先减小后增大,而在喷油提前角为100°CA时达到最小值;随着点火提前角的增大,火焰发展期延长,快速燃烧期先减小后增大且在点火提前角为20°CA时达到最小值。因此,喷油提前角100°CA、点火提前角20°CA为最佳匹配。此时,可实现点火时刻的均匀混合;同时具有较短的火焰发展期和快速燃烧期,所对应的缸内平均指示压力较高,指示燃油消耗率较低。  相似文献   

14.
基于2阶段喷射的缸内直喷汽油机HCCI燃烧的研究   总被引:4,自引:0,他引:4  
在缸内直喷汽油机(GDI)上采用2阶段燃油喷射技术来控制缸内混合气形成和燃烧,在GDI发动机上实现了均质混合气压燃(HCCI)燃烧方式,研究了缸内2阶段汽油喷射对HCCI燃烧特性的影响。结果表明,压缩行程中的第2次喷油时间可以有效地控制燃烧始点,二次喷油持续期可以控制燃烧速率、燃烧相位和拓宽发动机负荷。  相似文献   

15.
柴油机共轨式喷油系统喷油率控制技术分析   总被引:7,自引:1,他引:7  
阐述了优化燃烧过程与喷油系统特性的关系以及各种喷油率控制模式的要点 ,分析了国内外柴油机共轨式喷油系统实现喷油率控制的各种方法及其发展状况 ,提出了喷油率控制技术的发展方向。  相似文献   

16.
这种柴油机喷油系统(UFIS)适用于现有各种用途的发动机,也为重视排污和噪音的新的高性能柴油机提供了所需要的喷油量,喷油特性和定时控制。 这是一种电子液压喷油系统,它是采用电子控制的按一般传动原理工作的单体喷油器。这种喷油系统的特点是能准确地调节输出油量、增大油压和控制喷咀针阀。 这种喷油系统适应性强,而且具有一般喷油系统所没有的喷油特性。  相似文献   

17.
研究了中压共轨蓄压供油系统喷油定时的确定 ;提出了一种喷油定时的计算方法 ;分析了喷油延迟的影响因素 ,并进行试验绘制出喷油延迟MAP图。试验表明喷油延迟时间主要受共轨油压和转速影响  相似文献   

18.
文章旨在对高压共轨系统喷油特性从理论和测试两方面进行深入分析,以博世第2代共轨系统CRSN2为研究对象,应用INCA5.4标定软件,对系统的喷油特性,进行了综合完整的在线标定实验。测试数据明显地反映了不同的喷油特性对于柴油机动力性、经济性及排放等各方面性能的影响。同时,在理论上从燃油喷射和缸内燃烧的角度详尽地分析了喷油特性对柴油机性能影响的原因,进一步验证了测试结果。  相似文献   

19.
分析了日产柴油机电控喷油定时系统的结构特点及喷油提前角控制原理,介绍了基本喷油提前角的检查与调整方法,给出了电控喷油定时系统的故障诊断方法及传感器、执行器的检修与调整方法。  相似文献   

20.
在一台侧置多孔喷油器的单缸光学发动机上通过时序控制单元控制喷油时刻,研究喷油策略对缸内喷雾发展过程及燃烧特性的影响。研究结果表明,喷油时刻过早,油束会撞击活塞顶面形成油膜,产生扩散燃烧火焰,增加碳烟排放,且会减小燃烧速率,增加燃烧不稳定性;喷油过晚,缸内滚流变弱,缸内油气混合不均匀,局部过浓区域会产生扩散燃烧火焰,增加燃烧不稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号