首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 89 毫秒
1.
余子腾  劳健生 《公路》2001,(1):57-58
介绍香港青马大桥桥面板的防腐涂装,包括车间防腐、组装现场防腐和钢桥面板防腐方案。  相似文献   

2.
正交异性钢桥面板的疲劳寿命评估   总被引:5,自引:0,他引:5  
钢桥疲劳是由于各种车辆轮载反复作用引起的累积损伤过程,很容易疲劳开裂,因此疲劳验算是钢桥面板设计中的一项重要任务。利用静力试验的应力结果,并结合ANSYS有限元数值计算,提出了闭口纵肋正交异性钢桥面板的疲劳验算方案,在理论上对钢桥面板进行了寿命的具体分析。  相似文献   

3.
缪光全 《公路》2000,(2):56-58
装配式公路钢桥的特点是:结构轻巧、拆装方便,适应力强,用途广泛。但是战备库中的大部分木质桥面板已腐朽。本文提出纵梁改制桥面板的方案,通过静载试验。破坏性试验以及使用试验表明该方案可行。  相似文献   

4.
基于广东某钢结构大桥工程,对其在软土基公路桥梁耐久性设计与应用进行了分析研究。通过分析大桥所处的环境、上部结构和下部结构,进行了桥面板耐久性、钢梁防腐、上部结构耐久性、下部结构耐久性、所用混凝土耐久性的设计,采用新型钢与混凝土组合的PBL桥面板、掺入防腐材料和克汰系统的防腐方法,增强结构的耐久性能,除此以外桥梁的耐久性也能够得到提高,进而提出桥梁建筑的施工过程当中关于施工的工艺还有工程质量方面的要求。  相似文献   

5.
提出了钢—UHPC轻型组合桥梁结构,以克服传统钢-混凝土组合结构桥梁混凝土桥面板的不足。(1)从基本力学性能和经济性方面对轻型组合梁和传统组合梁进行对比,表明轻型组合梁具有自重低,力学性能优越,施工方便快捷,全寿命经济效益显著等特征,具有较好的应用前景。(2)对等厚板、带纵肋桥面板、华夫桥面板3种结构型式的UHPC桥面板进行有限元分析,结果表明:华夫桥面板竖向位移最小,整体刚度最大;带纵(横)肋桥面板仅纵肋下缘纵向拉应力最大,只需在纵肋下缘配置纵向受拉钢筋;华夫桥面板方案横向拉应力峰值小于较带纵肋方案。(3)基于华夫桥面板方案开展了足尺条带模型试验,正负弯矩试验的初裂应力分别为19.4 MPa和9.1 MPa,华夫桥面板方案能够满足正常使用极限状态的裂缝限值。  相似文献   

6.
FRP材料具有轻质、高强和耐腐蚀的特点,在桥面板中得到了广泛应用。结合近年FRP桥面板的发展现状,研究提出装配式公路钢桥FRP桥面板方案,并进行了有限元分析计算,为FRP桥面板的研制提供了理论依据。  相似文献   

7.
为提高现场桥面板湿接缝施工效率,结合既有项目,基于工业化建造思路,对预制混凝土桥面板免支模湿接缝构造型式进行研究。提出了三种预制混凝土桥面板免支模湿接缝方案,采用有限元进行模拟,对三种方案进行对比分析,探讨预制混凝土桥面板免支模湿接缝的可行性。研究表明:预制桥面板采用方案二(底部承托设置倒角)应力水平较好,承载能力满足结构要求。对于本项目,推荐采用方案二,有利于施工快速化、简便化进行,符合当前装配化发展趋势。  相似文献   

8.
王俊生 《城市道桥与防洪》2020,(5):202-205,M0021
从桥梁全寿命经济性设计观点出发,提出组合梁混凝土桥面板可更换方案,基于该方案,对桥面板更换过程中桥梁结构的受力以及不同的更换顺序对钢结构的影响进行了研究,从施工操作简单、结构安全性能佳的角度提出了桥面板更换的最优策略,确保大桥在维护特别是桥面板更换时的结构安全,同时保证大桥的百年寿命要求。  相似文献   

9.
普通城市钢桥设计体会   总被引:3,自引:0,他引:3  
本文介绍城市钢桥中简支梁和连续梁桥的有关材料、制造工艺、支承体系、钢桥面板、横向联结系、防腐涂装等方面的设计体会  相似文献   

10.
以一拟建钢-UHPC组合梁自锚式悬索桥为工程背景,建立全桥空间有限元杆系结构模型,研究了在“先斜拉后悬索”的施工过程中,UHPC桥面板浇筑阶段、UHPC桥面板的分段浇筑方案对加劲梁受力性能的影响。研究结果表明:UHPC桥面板在临时斜拉桥成桥后浇筑,在最终成桥状态下桥面板和钢梁的受力性能均优于在吊杆张拉完成后浇筑和在斜拉-悬索体系转换完成后浇筑;在临时斜拉桥成桥后浇筑UHPC桥面板,先浇筑斜拉索区梁段后浇筑中支点附近梁段,在最终成桥状态下中跨桥面板和钢梁的受力性能均优于先浇筑中支点附近梁段后浇筑斜拉索区梁段。  相似文献   

11.
为解决正交异性钢桥面铺装层破损及钢桥面结构疲劳开裂等病害问题,提出一种基于钢筋网联结的正交异性钢板-轻质超高韧性水泥基复合材料(ECC)组合桥面结构体系。试验结果表明:1)基于钢筋网联结的钢-ECC组合桥面结构具有良好的承载能力和控制裂缝能力;2)不同配筋组合桥面板的开裂强度不低于4.33 MPa,能够满足组合桥面的横向抗拉应力要求;3)ECC和钢板之间界面的滑移值很小,界面抗剪能力强。  相似文献   

12.
在钢桥面的铺装设计中,由于标高控制和自重控制要求,普通混凝土铺装层因厚度大、自重高难以满足设计要求,因此亟需薄厚度、高性能的铺装层,而超高性能混凝土(UHPC)是潜在可满足设计要求的铺装材料.但在循环交通荷载下,UHPC铺装层与钢板之间的黏结作用尚缺乏试验研究.研究开展了五点弯曲疲劳试验和剪切试验,研究UHPC钢桥面铺装层的黏结特性和抗疲劳破坏能力,并基于数值计算结果,将疲劳加载次数转换为标准轴载作用次数.研究发现,在标准车辆轮载作用下难以快速对试样产生损伤.即使试样黏结界面边缘开裂,稳定不变的变形也暗示裂缝并未扩展至内部,即试样内部损伤有限,仍然具有良好的承载力.含有栓钉的UHPC-钢桥面黏结界面的等效抗剪切强度为12.4 MPa左右,其破坏形式为栓钉的剪切破坏.UHPC与钢板之间协同作用十分显著,铺装后相对于无铺装的钢板刚度提升1倍左右.  相似文献   

13.
某跨江大桥为主跨460m的斜拉桥,运营多年后正交异性板钢箱梁出现大量裂纹,提出采用超高性能混凝土(UHPC)组合桥面(由配钢筋网的UHPC层与钢桥面板通过短栓钉组合而成)进行改造。为选择合适的改造方案,采用有限元法建立原钢箱梁和UHPC组合桥面钢箱梁(UHPC层厚4.5,5.5,6.0cm)模型,分析各疲劳细节应力及UHPC层应力;开展UHPC层配置钢板条的组合结构模型试验,验证其疲劳性能。结果表明:UHPC组合桥面降低了钢箱梁各疲劳细节最大应力幅,降幅为11%~88%,顶板疲劳细节处裂纹尖端最大应力幅降幅达92%;疲劳荷载作用下,UHPC层顶面应力较低,钢桥面板开裂后UHPC层底面应力较大;采用钢板条对5.5cm厚UHPC层的组合结构加强后,UHPC层名义开裂应力达43.2MPa,200万次疲劳寿命达22.1MPa,疲劳性能满足要求,选择该方案进行改造。  相似文献   

14.
大瑞铁路保山至瑞丽段采用跨度490m的上承式钢桁拱桥跨越怒江,该桥为高烈度地震区大跨度四线铁路桥,在桥上设站。对拱上梁的跨径、联孔、梁型和支座设置进行比选,确定拱上梁采用一联14×37.2m钢箱梁,拱上立柱采用钢结构双柱排架墩,钢箱梁与拱上立柱之间设置纵向固定支座以提高墩的纵向刚度。桥面总宽度为24.9m,分双幅对称设计,单幅钢箱梁采用双箱单室大悬臂结构。采用MIDAS Civil软件建立拱上钢箱梁局部空间板壳有限元模型进行结构分析,结果表明:大悬臂钢箱梁横向偏载效应较为明显,各支点反力由外向内依次减小,最不利状态下最小抗倾覆系数满足设计要求;钢箱梁应力、位移及疲劳验算均满足规范要求。  相似文献   

15.
目前,用于桥梁补强加固的方法主要有碳纤维加固、粘贴钢板加固等。该文介绍了北京国贸桥一期异形板板底加固采用了粘贴钢板补强加固方法。即:采用化学锚栓将钢板锚固于桥面,钢板与桥面间预留缝隙,四周封口后采用高效改性环氧粘接剂灌注填充缝隙。此方法具有较高的强度、刚度、稳定性、整体性和耐久性,可供今后类似工程借鉴。  相似文献   

16.
邢昕  冯克岩 《城市道桥与防洪》2012,(4):76-78,82,273
结构优化的少主梁新型组合桥梁体系,对桥面板的跨径,耐久性等提出了新的要求。组合桥面板从历史上单纯以钢板作为模板,发展为合理的利用了钢混两种材料各自的优点,提高了桥面板跨径,减少了重量,加快了施工速度,提高了施工安全性。通过一系列动载和静载试验证明,组合桥面板具有和预应力混凝土桥面板同等级的承载能力和耐久性。组合桥面板制造施工费用与现浇预应力桥面板相近,但工期可缩短30%以上,并且其维护成本低、替换拓宽方便,全寿命费用合理。因此,组合桥面板是值得我国借鉴并在今后进行发展研究的一种结构形式。  相似文献   

17.
采用"以钢代木"的总体技术方案,通过对纵梁的分解换位、添加固定装置和增架桥面钢板,研制出满足"321"装配式公路钢桥荷载等级的G型钢桥面板。该面板能够保持原桥面系和横梁结构不变,可与现有U型钢桥面板实现互换通用,实现了原木质桥面板到钢桥面板的升级。测试表明,G型钢桥面板性能良好,完全满足使用要求。  相似文献   

18.
铁路桥钢桥面铺装主要作用是保护钢桥面免受道砟的磨损与雨水的侵蚀,为提高铁路钢桥面铺装的使用寿命,减少中期维修,对铁路钢桥面超高性能混凝土(UHPC)组合桥面铺装体系进行研究。以沪通长江大桥主航道桥为背景工程,制作带UHPC铺装层的正交异性钢桥面板单U肋梁模型进行抗水渗性能试验,并结合实桥进行UHPC组合桥面铺装体系设计和施工工艺研究。结果表明:UHPC组合桥面体系在无裂缝时抗渗性能满足使用要求,可有效保护钢板免受雨水侵蚀,带裂缝的组合桥面,运营过程中裂缝会逐渐闭合,阻止雨水进一步渗透,具有较强的抗渗能力储备;为避免新浇混凝土开裂,UHPC应严格按规范流程施工,施工温度宜选择15~25℃,浇筑后应及时覆膜保湿养护。  相似文献   

19.
针对G60沪昆高速(镇胜段)北盘江大桥建设项目,对大桥钢桥面偏移分别进行了支座仿真分析和全桥整体仿真分析,旨在针对桥面板支座具体病害分析其对桥面板温度变化下伸缩变形状态的影响,找出钢桥面板温度变化下伸缩变形中心偏离设计中心的原因,以便对桥面板病害进行处置和强化后期养护管理。仿真分析计算采用非线性仿真分析软件ABAQUS和桥梁专用分析软件MIDAS CIVIL为主进行,通用结构分析软件SAP2000V11.08进行建模校核计算。结果表明:支座硅脂流失、下钢板锈蚀等病害是引起桥面板温度伸缩变形中心偏离设计中心位置的重要原因。建议进行桥面板复位顶推施工前,先完成对重点病害支座的更换工作,尽量使得顶推前各桥面板支座均能满足良好滑动状态,同时建议在加固设计中,提高跨中固定支座的抗剪设计承载力等级,避免跨中固定支座的剪切破坏。  相似文献   

20.
上海长江大桥自2009年建成通车至今已逾12a,期间受重载交通、江面气候潮湿等影响,该桥的主桥钢桥面铺装曾出现过一定程度的病害,因此分别进行了两次规模较大的维修工程.基于铺装病害状况、维修方案及方案实施效果,对两次维修的技术方案进行了对比分析.分析结果表明,在国内重载交通日益严重的现状下,选择钢桥面铺装材料和结构体系时应重点考虑其对重载交通的适应性,同时应提高层间及铺装与钢板间的黏结体系质量,以确保钢桥面铺装体系的长期服役性能,减少各类病害和后续的日常维修.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号