首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
不同初始条件下的南宁膨胀土胀缩应变试验研究   总被引:2,自引:0,他引:2  
苗鹏  肖宏彬  范志强 《公路工程》2008,33(2):38-41,117
针对南宁中等膨胀土,进行了侧限无荷、有荷膨胀试验、收缩试验及干湿循环试验的一系列试验,分别建立了南宁膨胀土在无荷和轴向加压条件下侧限膨胀应变与初始含水率、干密度和竖向荷载之间的关系式,分析了膨胀率与过程吸水量的关系、线缩率与初始含水率关系。试验结果表明:在其他条件相同情况下,膨胀应变与初始含水率呈反比线性关系,与初始干密度呈正比线性关系,与竖向压力呈半对数反比关系;膨胀量与过程吸水量呈正比线性关系。最后建立了南宁膨胀土膨胀应变三元回归方程模型,为预测和估算膨胀土路基的膨胀潜势和差异隆起提供了依据。  相似文献   

2.
以肯尼亚蒙巴萨地区典型膨胀土为研究对象,进行了室内无荷载和有荷载条件下的膨胀率试验,探究了膨胀土膨胀特性与初始含水率、干密度及上部荷载的关系。结果表明:该试样的膨胀变形可分为膨胀加速、膨胀衰减和膨胀稳定三个阶段;膨胀速率和膨胀稳定量与干密度和初始含水率密切相关。在无荷载试验条件下,随着干密度和初始含水率的增加,膨胀率基本呈线性变化趋势;在有荷载试验条件下,上部荷载会对膨胀土的膨胀有显著的抑制作用;膨胀土膨胀率随上部荷载的增加呈线性关系降低。  相似文献   

3.
针对南宁中等膨胀土,进行了侧限无荷、有荷膨胀试验、收缩试验及干湿循环试验的一系列试验,分别建立了南宁膨胀土在无荷和轴向加压条件下侧限膨胀应变与初始含水率、干密度和竖向荷载之间的关系式,分析了膨胀率与过程吸水量的关系、线缩率与初始含水率关系.试验结果表明 在其他条件相同情况下,膨胀应变与初始含水率呈反比线性关系,与初始干密度呈正比线性关系,与竖向压力呈半对数反比关系;膨胀量与过程吸水量呈正比线性关系.最后建立了南宁膨胀土膨胀应变三元回归方程模型,为预测和估算膨胀土路基的膨胀潜势和差异隆起提供了依据.  相似文献   

4.
在保持含水率和干密度不变的条件下,将风化砂以不同比例掺入膨胀土中,通过击实试验、无荷膨胀试验和三轴试验,研究风化砂改良膨胀土的效果。研究结果表明:最优含水率随掺砂量增加而减小,但最大干密度先增大后减小;随着风化砂掺量增多,膨胀率相应降低;当掺砂量达到40%时,膨胀率降低了6.64%,风化砂能明显抑制膨胀土的膨胀性;膨胀土的主应力峰值随掺砂量的增加先增大后减小,当掺砂量为16%时抗剪强度最大,而黏聚力随掺砂量的增加逐渐减小,内摩擦角先增大后减小,因此确定最佳掺砂量为16%。  相似文献   

5.
南水北调工程粘土岩基本物理性质试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
粘土岩是南水北调中线工程总干渠潞王坟膨胀岩试验段具有代表性的膨胀岩之一。通过颗粒分析试验、击实试验、膨胀性试验和渗透试验来了解其基本物理性质,结果表明:①粘土岩的颗粒组成以粉粒、粘粒和胶粒为主,含有少量砂粒,级配一般;轻型击实、干土法制样时,粘土岩最优含水率为25.9%,最大干密度为1.56 g/cm3。②粘土岩的自由膨胀率为68%~70%,具有中等膨胀潜势;其无荷膨胀率、膨胀力均随干密度的增加而增加,但干密度达到1.60 g/cm3后,粘土岩的无荷膨胀率和膨胀力增幅均有不同程度的减缓。③粘土岩原状样和重塑样的渗透系数随着干密度的增大而减小。  相似文献   

6.
南宁外环膨胀土抗剪强度非线性特征及影响因素分析   总被引:1,自引:0,他引:1  
以南宁外环膨胀土为对象,开展含低应力条件的不同干密度、不同初始含水率、无荷和有荷干湿循环作用重塑样、有荷干湿循环作用原状样的饱和慢剪以及重塑样饱和三轴固结排水试验,研究干密度、初始含水率、无荷和有荷干湿循环作用等因素对其低应力条件下抗剪强度的影响。结果表明:各抗剪强度包线均呈非线性特征,可用广义幂函数很好地拟合;低应力、干密度及初始含水率对饱和慢剪强度的影响显著;试件初始含水率相同时,干密度越大,强度越大;干密度相同时,初始含水率越大,强度也越大;随干湿循环次数的增加,无荷条件下土样的抗剪强度衰减强于有荷条件。  相似文献   

7.
通过不同干密度、不同初始含水率在施加不同压力下的重塑膨胀土的直剪试验,研究了南(宁)-友(谊关)路膨胀的应力-应变特性以及强度指标的变化情况。研究表明:干密度的增加能大幅提高土体的峰值强度,但对残余强度影响不大,土体的粘聚力与干密度成良好的指数关系,内摩擦角受干密度影响较小;随初始含水率增加,膨胀土体峰值强度的剪切位移增加,而峰值强度、粘聚力、内摩擦角有先增大后减小的趋势;垂直压力的增大对提高重塑膨胀土峰值强度和残余强度都有一定帮助。  相似文献   

8.
采用侧限有荷膨胀试验,研究了膨胀土有荷膨胀率和上部荷载、终了含水量以及过程含水量之间的关系,据此推导出了可以用来计算膨胀土路堤随含水量以及上部荷载变化而变形的本构模型。研究结果表明:在初始含水量一定的条件下,有荷膨胀率与上部荷载半对数呈线性关系,终了含水量与上部荷载半对数呈线性关系,有荷膨胀率与过程含水量呈线性关系;该模型是利用室内常规试验可以得到的,能反映研究地区岩土体主要性状的应用型本构模型。  相似文献   

9.
初始状态对膨胀土变形规律的影响   总被引:3,自引:1,他引:2  
针对不同初始含水量和初始干密度的中弱膨胀土和石灰改性膨胀土,对上覆压力作用下的变形规律进行了试验研究,得到了其膨胀变形随稠度状态的变化规律。结果表明,稠度状态可以较好地预测上覆压力与线膨胀率之间的关系;稠度状态对膨胀土的影响很大,对同一种膨胀土和其石灰改性土有所不同,随着灰剂量的增加和上覆压力的增大,稠度状态对改性土影响逐渐变小。因此,在膨胀土路基施工过程,应合理考虑上覆压力和稠度状态来分层控制路基的压实。路基下基层可以适当提高填筑的稠度状态,上基层采用相应较低的稠度状态填筑,以减少膨胀率及膨胀力对路基造成的破坏。  相似文献   

10.
通过室内无荷载膨胀量试验和自动化采集系统,研究了不同初始含水率、不同初始干密度下六威高速击实膨胀土的膨胀变形特性。结果表明:无荷载膨胀量与初始含水率呈线性负相关关系,与初始干密度总体呈幂函数正相关关系。膨胀量的全时程变形可以分为等速直线膨胀阶段、减速非线性膨胀阶段与缓慢非线性膨胀阶段,膨胀量主要发生在减速非线性膨胀阶段。采用天然状态膨胀土进行下路堤填筑,其膨胀变形可控。  相似文献   

11.
设计室内大型振动击实仪,对砂土、含砂粉土、低液限黏性土3种土样的纯土试件和土石混合试件进行了不同含水量、不同含石量情况下试件剪切波速对比试验。建立细粒土随含水率增大至液化过程中,细粒土干密度与剪切波速相关模型。研究不同含水率细粒土对同性质土体土石混填料剪切波速的影响规律。结果表明:干密度一定时,细粒土剪切波速随含水率的增大而减小。含水率相同,当含水率较小时,细粒土剪切波速随干密度的增大而增大,混合料剪切波速增大;当含水率较大且趋于液化时,细粒土剪切波速随干密度增大呈凸形类抛物线变化,混合料剪切波速变化趋势一致,但转折点略滞后于细粒土。含水率引发的混合料剪切波速变化随含石量增大而减小。研究结果将为土石混合料压实质量剪切波速测试分析技术提供依据。  相似文献   

12.
设计室内大型振动击实仪,对砂土、含砂粉土、低液限黏性土3种土样的纯土试件和土石混合试件进行了不同含水量、不同含石量情况下试件剪切波速对比试验.建立细粒土随含水率增大至液化过程中,细粒土干密度与剪切波速相关模型.研究不同含水率细粒土对同性质土体土石混填料剪切波速的影响规律.结果表明:干密度一定时,细粒土剪切波速随含水率的增大而减小.含水率相同,当含水率较小时,细粒土剪切波速随干密度的增大而增大,混合料剪切波速增大;当含水率较大且趋于液化时,细粒土剪切波速随干密度增大呈凸形类抛物线变化,混合料剪切波速变化趋势一致,但转折点略滞后于细粒土.含水率引发的混合料剪切波速变化随含石量增大而减小.研究结果将为土石混合料压实质量剪切波速测试分析技术提供依据.  相似文献   

13.
以朔黄铁路广泛应用的粉质黏土填料为研究对象,采用杠杆仪法测定粉质黏土的回弹模量,研究含水率和干密度对重载铁路路基填料回弹模量的影响。研究表明:路基土体的回弹模量随干密度的增大而增大,随含水率的增大而减小;相比于干密度,土体的回弹模量对于含水率更敏感;提出可考虑含水率和干密度影响的路基基床土体弹性模量预估模型;通过实际铁路路基监测数据,验证模型在预估路基弹性变形方面的有效性。研究结果对于在外荷载和雨水联合作用下,进一步认识粉质黏土填料路基的弹性变形特性、状态评估与加固强化设计,具有参考价值。  相似文献   

14.
《公路》2021,(3)
风积沙填筑路基土在荒漠区独特的水、热、盐等赋存环境条件下,其基质吸力特征曲线也具有特殊性,对荒漠区道路的各项服务性能指标影响较大。为探究不同因素作用下荒漠区风积沙路基土基质吸力的变化规律,并对各影响因素的显著性进行排序,以荒漠区风积沙路基土为试验土样,选取初始干密度、初始含水率、含盐量、含盐种类、平衡温度为变量,使用滤纸法进行不同变量条件下土样基质吸力影响因素研究;使用数理统计分析方法设计正交试验,对各因素影响的显著性进行对比分析。结果表明:各因素对基质吸力影响的显著性顺序由大到小分别为初始含水率、初始干密度、含盐量、平衡温度。其中初始含水率和初始干密度对基质吸力的影响最为显著,初始含水率的增大使基质吸力急剧减小而后减小速率变缓;基质吸力与初始干密度呈正相关关系;含盐量及平衡温度均对风积沙路基土基质吸力有一定的显著性影响,控制含水率不变,土中基质吸力值与平衡温度及含盐量呈正相关关系;控制含盐率不变,Na_2SO_4盐渍土中基质吸力相对Na_2CO_3盐渍土更大。初始干密度、平衡温度以及含盐量与初始含水率的多重耦合作用均对土中基质吸力有显著影响。研究结果可用于指导荒漠区风积沙填筑路基土工程施工。  相似文献   

15.
《公路》2020,(7)
为研究初始含水率对砂质泥岩膨胀变形特性的影响规律,取武汉某路基工程膨胀性砂质泥岩,开展不同初始含水率下砂质泥岩自由膨胀率试验和侧限约束膨胀率试验。两种试验结果均表明:砂质泥岩膨胀变形过程经历了3个阶段,即快速膨胀阶段、缓慢膨胀阶段和膨胀稳定阶段。自由膨胀率试验条件下:砂质泥岩快速膨胀阶段耗时最少,约为40~80min,但该阶段变形最大,约占总膨胀量的45%~80%,且初始含水率越高,该阶段的膨胀比越小;膨胀稳定阶段耗时最长,所占时间超过总膨胀变形时间的80%,但该阶段的膨胀比最小,仅为9%~15%,且初始含水率越高膨胀比越大。侧限试验条件下:砂质泥岩快速膨胀阶段耗时最短,约为30min,膨胀比为25%~40%;缓慢膨胀阶段膨胀比最大,为49%~60%,且初始含水率越高,膨胀比越大;膨胀稳定阶段膨胀比最小,仅为11%~15%,且初始含水率越高,膨胀比越大。砂质泥岩自由极限膨胀率、侧向约束极限膨胀率和体积膨胀率均随初始含水率的升高而线性降低。同一初始含水率条件下,侧向约束极限膨胀率最大,轴向自由极限膨胀率次之,径向自由极限膨胀率最小,且轴向自由极限膨胀率是径向自由极限膨胀率的2.1~2.3倍。  相似文献   

16.
为了研究膨胀土的膨胀特性和收缩特性,文章通过试验,测定不同初始含水率膨胀土试样在膨胀过程中膨胀率和膨胀力随时间的变化曲线,以及收缩过程中含水率和线缩率随时间的变化曲线。试验结果显示,膨胀土的膨胀主要分为快速膨胀阶段(0~2 h)、减速膨胀阶段(2~5 h)和缓慢膨胀阶段(5 h),初始含水率越大,膨胀率和膨胀力越小;收缩过程中水分蒸发主要分为:快速蒸发阶段(0~40 h)、减速蒸发阶段(40~120 h)和缓慢蒸发阶段(120~180 h),初始含水率越小,收缩过程中的含水率和线缩率越小。  相似文献   

17.
依托某市政道路病害检测,通过现场勘察、钻探取芯、开挖探坑、室内试验等手段,发现该道路不均匀沉降变形及基层损坏严重,其根源在于地基及路基土具有弱膨胀性土特性。进一步通过膨胀性试验,分析了膨胀土在有荷、无荷条件下的膨胀率及膨胀力,提出了土体膨胀率、膨胀力与土体压实度、含水率的相关关系。为了揭示膨胀土对路面结构破损及不均匀变形的影响机理,运用BISAR软件计算分析了不同膨胀力、不同基层模量对道路结构层受力特性及变形特性的影响,揭示了膨胀土路基半刚性路面结构破损机理。  相似文献   

18.
泥质软岩土石混合料弃渣路用性能研究   总被引:1,自引:0,他引:1  
为了有效利用泥质软岩土石混合料弃渣作为路基填料,在土样基本工程性质试验的基础上,对不同含水率的土样开展了膨胀率试验及大型固结试验,通过对现场不同路基填筑工艺的试验和数值计算模拟可知,不同初始含水率条件下,浸水4昼夜后土样的膨胀率随初始含水率的增加先增大后减小;试样属于中压缩性土,最佳含水率时的试样压缩模量是饱和含水率的1.2倍;泥质软岩土石混合料弃渣填筑路基的松铺厚度宜控制在40 cm左右,填料粒径不大于260 mm,按照试验推荐工艺可以达到高速公路及一级公路1.5m以下路堤的压实度标准.  相似文献   

19.
文章对膨胀土石灰改良膨胀土初始含水量与干密度以及膨胀率对其加州承载比(CBR)值的影响规律,通过室内承载比试验,按照相关的试验规范的步骤进行CBR试验,分析了膨胀土和石灰改良膨胀土的CBR随着压实度变变化的基本规律。发现膨胀土的CBR值随其膨胀潜势等级、含水量、压实度变化的规律,CBR值对应的含水量大于最佳含水量,其差值随压实度的减小而减小.这些特征与膨胀土的固有膨胀特性以及膨胀潜势等级有关.膨胀土用于路堤填筑时,含水量宜按较最佳含水量稍大,并略低于塑限,干密度较最大干密度略低的标准控制,这才有利于路堤的长期稳定。  相似文献   

20.
公路汽车排放的重金属等污染物对膨胀土路基渗透及膨胀性能的影响受到越来越多的关注。通过渗透试验和膨胀变形试验研究了不同干密度和金属污染物浓度对压实膨胀土渗透和膨胀性能的影响。试验结果表明干密度1.5 g/cm~3的压实膨胀土试样蒸馏水的渗透系数约为2×10~(-9)m/s;随着压实膨胀土试样干密度增大渗透系数显著减小。因金属污染物对膨胀土扩散双电层(DDL)的影响,压实膨胀土试样渗透系数随着金属污染物Cu~(2+)浓度的增大而增大。由于渗透固结作用,压实膨胀土试样膨胀变形随金属污染物Cu~(2+)浓度的增大而减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号