首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 483 毫秒
1.
建立了船用柴油机SCR (Selective Catalytic Reduction,选择性催化还原) 系统模型,研究了船用柴油机在1000 r/min、75%负荷工况下,SCR系统含氮化合物(HNCO、NH3、NO、NO2)的浓度场特性。研究结果表明:HNCO水解是尿素SCR系统产生NH3的重要来源,其水解速率远高于NO、NO2、NH3的反应速率;在SCR前端,随时间的推移,NH3浓度先升高再急剧下降至稳定状态,在中后端则呈现相反的现象;NO、NO2在SCR前端基本不反应,在SCR中后端,随着时间的推移,基本呈先降后升的趋势;HNCO、NH3、NO、NO2在典型横截面的浓度分布均呈不均匀的“十”字形分布,且大都呈现截面中心及边界中线周围浓度较高、截面四个对角浓度较低的分布规律。  相似文献   

2.
为提高船用柴油机低负荷下选择性催化还原(Selective Catalytic Reduction,SCR)反应器的NO_x转化率,采用O_3协同SCR进行排气处理试验研究。试验研究结果表明:柴油机在40%负荷率以下的低负荷工况,SCR反应器不工作的情况下,排气管中注入O_3,NO_2/NO浓度比得以提高;柴油机在20%负荷率工况下,NO_2/NO浓度比达到30%。同时,O_3可有效地降低柴油机烟度(K值)和HC的排放,其排放浓度与注入O_3前相比,最高降幅分别达到51%和19.1%。柴油机在30%负荷率以下的低负荷工况,SCR反应器按氨氮比1∶1的标定尿素喷射量喷入尿素时,SCR反应器前的排气管注入O_3与注入O_3前相比,SCR反应器中NO_x转化率得以提高,最高增幅达到32.1%。主要原因在于排气管中注入O_3,NO_2/NO浓度比升高,促进SCR反应器中NO_x催化还原的快速反应。排气管注入O_3后,在SCR反应器工作的情况下,SCR反应器后的烟度(K值)降低,HC排放也稍有降低。试验表明:O_3协同SCR有利于柴油机在低负荷下提高SCR反应器的NO_x转化率。  相似文献   

3.
以某船用中速柴油机为仿真对象,利用AVL_Boost软件建立带有SCR反应器的整机模型,分析SCR反应器对柴油机性能影响。结果表明,在E3和D2工况下,SCR反应器所产生的压降随转速和负荷率的增大,呈线性化增大。加入SCR反应器对柴油机的经济性和动力性均有所降低,除E3额定况点外,其余工况点降低幅度均小于5%。通过对SCR反应器的仿真分析,可对该型柴油机SCR反应器的选型设计有一定指导意义。  相似文献   

4.
在某船用柴油机SCR反应器及尿素喷射系统结构参数优化的基础上,建立SCR混合器三维仿真模型,研究SCR混合器叶片角度和安装位置对SCR系统的混合均匀性、压力损失、NH3逃逸、NOx转化率的影响。仿真结果表明:混合器叶片角度为15°、安装位置离喷嘴下游75mm时,可使催化剂进口截面的NH3分布均匀性系数提高4.5%,NOx转化率提高6%。  相似文献   

5.
应用均质压燃反应器模拟生物燃料分子丁酸甲酯在低转速二冲程内燃机转速为55 r/min~85 r/min不同工况下的燃烧情况,计算反应器内NO浓度、NO_2浓度以及N_2O浓度随曲柄转角的变化关系,并且对NO_X的反应过程进行分析。对相关反应机理进行研究,结果表明:NO和NO_2在尾气中的浓度随转速降低而降低;NO浓度在曲柄转角为350°~390°时下降的原因之一是其转化成了N_2;NO_2浓度在曲柄转角为350°~390°时下降的原因是其转化成了NO;NO_2浓度在曲柄转角为390°~480°时上升是因为其由NO转化而来;N_2O浓度下降大多是因为N_2O转化为N_2的缘故。  相似文献   

6.
针对某型船用柴油机满足IMO Tier III标准的要求,设计了两型16种SCR反应器,采用数值模拟的方法研究了结构参数对反应器内气体流动的影响。结果表明在30°~45°区间较小的过渡角及较长的过渡段有利于气流的均匀分布;长径比在0.3~3之间变化时,随长径比增加,入口截面的均匀性指数先减小后增加,而中间截面则持续增加后趋于平缓。选取过渡角30°,长径比2.43的圆型SCR反应器研究了喷射参数对于尿素溶液喷射效果的影响,结果表明喷孔与轴线的角度在30°~60°时液滴平均行程随角度的减小而增加,有利于溶液的蒸发,同时喷射点应尽量远离壁面。  相似文献   

7.
船用柴油机对环境的影响主要可分为噪声污染和排放造成的大气污染,伴随着国际海事组织(IMO)第3阶段排放标准(Tier Ⅲ)的实施,为船舶配置选择性催化还原反应(SCR)脱硝装置已成为必然选择,可借鉴车用柴油机排气净化消声器装置的应用经验,对船舶柴油机的排气消声器和SCR反应器进行联合设计。采用动力系统、流场和声场联合分析的方法,结合商用软件GT-Power、Fluent和LMS Virtual. Lab进行联合仿真,计算初步设计配置于船用MAN 9L32/40型柴油机排气净化消声器的压力损失和消声效果。仿真计算结果显示,该排气净化消声器的压力损失满足柴油机排气要求,同时在2 000 Hz以下具有良好的消声效果。  相似文献   

8.
船用选择性催化还原(selective catalytic reduction,SCR)技术是1项高效的NOX脱除技术,已经在船舶领域得到了广泛应用,但随着环保要求调整与能源结构的变化,船用SCR技术也需要相应调整。目前船用SCR多使用尿素-选择性催化还原(Urea-SCR)技术,此技术受船用燃料油中杂质及烟气排气温度影响较大。其中,船用燃料油中的硫(S)及碱性金属等物质含量高,对催化剂的毒副作用明显,限制了船用SCR的使用。船舶主要使用柴油机,决定了烟气排气温度变化区间,通过影响尿素水解产NH3效果、SCR反应器布置形式及催化剂活性,最终影响尾气脱硝效果。上述现状表明,使用船用燃料油的船舶,带废气加热的LP-SCR系统设计将是SCR设计的重要方向;寻找产NH3效率高及控制精确的安全NH3源(或方式),对于船用SCR系统发展也起到了至关重要的作用;提高燃料品质、降低烟气中毒副作用限制,可为研制发展船用新型低温、抗毒催化剂提供基础。由于碳中和目标,低碳、零碳燃料船舶将是全球趋势,使得燃烧后排气不同,进...  相似文献   

9.
针对某船用柴油机,在D2试验循环模式下进行原机和加装SCR系统后的性能对比试验,分析SCR反应器在无尿素喷射时对柴油机排气特性和经济性的影响,同时还分析按氮氨比为1∶1进行尿素喷射时SCR系统的工作性能。试验结果表明:柴油机安装SCR系统后,排气背压和排气温度均有所上升;经济性略有下降,额定工况下降低幅度在1%左右;虽然增压器后NOX排气浓度增大,但NOX质量流量下降幅度较大,额定工况下降幅度为12.3%,尿素基本喷射量标定计算应以加装SCR反应器后的柴油机排气参数为依据;NOX加权比排放由原机的12.63 g/k Wh降低到11.52 g/k Wh,降低了8.7%。按氮氨比为1∶1的比例进行尿素喷射时,SCR系统能满足Tire III的NOX排放限值要求。研究结果可为SCR系统设计和尿素喷射量的标定提供一定的指导依据。  相似文献   

10.
利用AVL_BOOST软件建立了某船用柴油机SCR催化器仿真模型,通过响应面优化法和BBD试验设计法开展仿真试验,得到以NO_X转化率为目标函数,压降和NH_3滑移量为约束条件的回归方程。通过回归方程对SCR催化器载体结构参数进行优化,优化结果为:横截面积为0.069m~2,长度0.833m,载体孔密度为22/cm~2,涂层厚度0.01mm,载体壁厚0.15mm。  相似文献   

11.
[目的]船舶柴油机选择性催化还原(SCR)反应器的NOx转换效率受其入口流场均匀性的影响。为优化柴油机排气管路设计,提高其转换效率,有必要建立合理的入口流场均匀性评价体系。[方法]以某船用柴油机排气管路为研究对象,首先,在额定工况下对其流动特性进行分析;然后,在此基础上进一步通过引入多项评价指标,从不同的角度对SCR反应器入口流场均匀性进行评估,并对各评价指标之间的差异性与适用性进行探讨。[结果]结果表明,管道弯折、突变部位的压力损失约占排气系统的20%,且SCR反应器入口前的弯折对其入口流场均匀性的影响较大,局部最大不均匀度高达19.96%。[结论]研究显示,为提高入口流场均匀性,SCR反应器入口面应与弯折、突变部位保持一定的距离;对于船用柴油机排气系统,均匀性指数γ值和局部面积最大不均匀度δ更能切实地评价SCR反应器入口流场均匀性。研究结果可为合理评估流场均匀性提供重要参考依据。  相似文献   

12.
以潍坊华东6105AZLD型柴油机的选择性催化还原(Selective Catalytic Reduction,SCR)系统为研究对象,以试验数据为基础,利用AVL BOOST软件建立目标柴油机SCR催化剂模型。进行SCR化学反应动力学参数的优化,分析催化剂体积、截面布置形式、孔密度以及布置层数对催化剂性能的影响,最终确定催化剂体积为0.072 m3,截面布置形式为2×2,孔密度为30×30,布置层数为2,每层高度为0.4 m。优化设计后的催化剂脱硝率、压降和氨逃逸率分别为82%,237 Pa,0.007 5‰。  相似文献   

13.
为了解船用柴油机燃烧过程,分别通过数值模拟和排放试验方法,对柴油机的湍流强度、混合气浓度及排放产物进行了分析。结果显示,船用柴油机的缸内湍流并不均匀,喷雾轴线两侧的气体流量变大。NOx在缸内分布的呈现高浓度区域具有从气缸向喷嘴聚焦的趋势。  相似文献   

14.
选择性催化还原技术是一种柴油机尾气排放后处理技术。针对船舶柴油机SCR系统非线性、难以建模与控制的特点,分析系统内部的化学反应,根据能量和质量守恒确定各状态量满足的微分方程,建立SCR系统数学模型,并验证其特性。为了实现SCR系统的控制目标,即在保证NH_3逃逸量不超过限定值的前提下,尽可能提高NO_X转化率,以NH_3逃逸量为约束输出,NO_X出口浓度为控制输出,氨喷射量为控制变量,设计了非线性模型预测控制器,实时计算系统所需尿素喷射量。试验仿真表明了非线性模型预测控制器的有效性,稳态工况和瞬态工况下NO_X转化率分别达到了93.803%和91.760%,NH3逃逸量均低于10 ppm,满足Tier Ⅲ标准对船舶柴油机尾气氮氧化物排放的限制。  相似文献   

15.
用管式反应器试验研究了反应温度、[O3]/[NO]对臭氧氧化NO的影响.结果表明,O3/N2/O2体系在常温、200℃、275℃下均不发生反应,N2不能被O3氧化;在O3/NO/N2/O2体系中,NO主要氧化为NO2,只有1~6(10-6)其他氮氧化物生成.如N2O and N2O3.当[O3]/[NI]=1、反应温度分别为常温和200℃时,NO氧化率都达到100%,而在275℃时,NO氧化率只有72%.表明反应温度影响显著,其原因主要与较高温度下O3分解加快有关.O3在不同温度下的分解试验发现,O3在常温下分解很慢;200℃时分解加快,在反应器中停留9 S时,O3的分解率为59%,而275℃时分解更快,在反应器中停留9 s时,O3的分解率为80%.试验结果还表明,NO氧化率与[O3]/[NO]成线性关系.  相似文献   

16.
用浸渍法制备钴基催化剂,考察了载体、活性组分负载量、焙烧温度、助剂等制备条件对钴基催化剂催化氧化NO性能的影响,结果表明:以ZrO2为载体,活性组分负载量为10%,表面活性剂含量5%,在350℃焙烧的催化剂具有最佳的NO催化氧化性能,在NO进口浓度700ppm、O2体积分数5%、空速27000 h-1的条件下,200℃时NO氧化率可达49%,满足快速SCR的条件。对NO催化剂进行孔隙结构及XRD表征,结果表明催化剂比表面积的大小不是决定催化剂活性的必要条件,而Co3O4晶体平均颗粒尺寸的大小对催化剂活性有一定影响。考察了空速对催化剂效率的影响,发现NO催化氧化剂在较高空速下仍居有一定活性,并对低温、高空速条件下SCR的反应效率有较大提升。在180℃时,SCR的NO去除效率由联合前的53%提高至65%。  相似文献   

17.
以MAN电喷柴油机SCR系统吹灰装置管路作为研究对象,用Fluent软件作为计算工具,吹灰装置管路上的喷孔分布一般分为3×3和4×4的2种布置方案,对这2种喷孔的布置方案通过研究,仔细比较了A,B,C三种不同布置方案在不同的喷孔间角与吹扫压力下的吹扫覆盖率,对C方案的布置提出了优化措施。鉴于SCR反应器的结构可能会对最边上的喷孔造成影响,提出D方案对反应器最外侧的喷孔布置进行分析,得到最佳吹扫压力和喷孔间角,为吹灰装置的研究设计提供参考。  相似文献   

18.
正《船用柴油机氮氧化物排放试验及检验指南(2020)》是在《船用柴油机氮氧化物排放试验及检验指南(2017)》的基础上,纳入了MEPC.307(73)、MEPC.317(74)、MEPC.313(74)决议的要求,同时并入了该指南2018年第1次变更通告的内容。本次指南修改的主要内容包括:1)第1章,增加"电子记录薄"的定义。2)第3章,对于带选择性催化还原(SCR)系统的柴油机,采用Scheme A还是选择Scheme B进行认  相似文献   

19.
本文应用均质压燃反应器模拟了生物燃料分子丁酸甲酯在低转速二冲程内燃机中85 rpm-55 rpm不同工况下的燃烧情况,计算了反应器内NO浓度、NO2浓度以及N2O浓度随曲柄转角的变化关系,并且对NOx的反应过程进行分析。通过对相关的反应机理的研究表明,NO和NO2在尾气中的浓度随转速的降低而降低;NO在曲柄转角为350o-390o时下降的原因之一是转化为N2;NO2在曲柄转角为350o-390o是浓度下降是转化为NO,NO2在曲柄转角为390o-480o浓度上升是由NO转化而来的;N2O的浓度下降是大部分的N2O转化为N2的缘故。  相似文献   

20.
运用FIRE软件完成对6105AZLD型柴油机试验台SCR系统建模,在此基础上,分别从速度场、雾化效果、压力场三方面对仿真计算结果进行分析,验证了模型的合理性。使用控制变量法,针对影响SCR反应的因素,依次分析喷嘴孔数、扩张段长度、喷嘴距催化剂入口截面的距离对SCR系统的影响,以混合均匀度及NOx转化率为评价标准,选出一组最优的喷射系统结构参数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号