首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A zero-speed fin stabilizer system was developed for rolling control of a marine robot.As a robot steering device near the sea surface with low speed,it will have rolling motion due to disturbance from waves.Based on the working principle of a zero-speed fin stabilizer and a marine robot’s dynamic properties,a roll damping controller was designed with a master-slave structure.It was composed of a sliding mode controller and an output tracking controller that calculates the desired righting moment and drives the zero-speed fin stabilizer.The methods of input-output linearization and model reference were used to realize the tracking control.Simulations were presented to demonstrate the validity of the control law proposed.  相似文献   

2.
The frequency stability of a marine power system is determined by the dynamic characteristic of the diesel engine speed regulation system in a marine power station. In order to reduce the effect of load disturbances and improve the dynamic precision of a diesel engine speed governor, a controller was designed for a diesel engine speed regulation system using H2 control theory. This transforms the specifications of the system into a standard H2 control problem. Firstly, the mathematical model of a diesel engine speed regulation system using an H2 speed governor is presented. To counter external disturbances and model uncertainty, the design of an H2 speed governor rests on the problem of mixed sensitivity. Computer simulation verified that the H2 speed governor improves the dynamic precision of a system and the ability to adapt to load disturbances, thus enhancing the frequency stability of marine power systems.  相似文献   

3.
Transportation of tension leg platform(TLP) structures for a long distance has always been associated with the use of a heavy semi-transport vessel.The requirements of this type of vessel are always special,and their availability is limited.To prepare for the future development of South China Sea deepwater projects,the China Offshore Oil Engineering Corporation has recently built a heavy lift transport vessel-Hai Yang Shi You 278.This semi-submersible vessel has a displacement capacity of 50k DWT,and a breath of 42 meters.Understanding the vessel’s applicability and preparing it for use in future deepwater projects are becoming imminent needs.This paper reviews the current critical issues associated with TLP transportation and performs detailed analysis of the designed TLP during load-out and transportation.The newly built COOEC transportation vessel HYSY 278 was applied to dry transport of the TLP structure from the COOEC fabrication yard in Qingdao to an oil field in South China Sea.The entire process included the load-out of the TLP structure from the landsite of the fabrication yard,the offloading and float-on of the platform from the vessel,the dry transport of the TLP over a long distance,and the final offloading of the platform.Both hydrodynamic and structure analysis were performed to evaluate the behavior of the transport vessel and TLP structure.Special attention was paid to critical areas associated with the use of this new vessel,along with any potential limitations.The results demonstrate that HYSY 278 can effectively be used for transporting the structure with proper arrangement and well-prepared operation.The procedure and details were presented on the basis of the study results.Special attention was also given to discussion on future use based on the results from the analysis.  相似文献   

4.
The flexibility demand of marine nuclear power plant is very high, the multiple parameters of the marine nuclear power plant with the once-through steam generator are strongly coupled, and the normal PID control of the turbine speed can't meet the control demand. This paper introduces a turbine speed Fuzzy-PID controller to coordinately control the steam pressure and thus realize the demand for quick tracking and steady state control over the turbine speed by using the Fuzzy control's quick dynamic response and PID control's steady state performance. The simulation shows the improvement of the response time and steady state performance of the control system.  相似文献   

5.
Parallel turbine-driven feedwater pumps are needed when ships travel at high speed. In order to study marine steam generator feedwater control systems which use parallel turbine-driven feed pumps, a mathematical model of marine steam generator feedwater control system was developed which includes mathematical models of two steam generators and parallel turbine-driven feed pumps as well as mathematical models of feedwater pipes and feed regulating valves. The operating condition points of the parallel ttu-bine-driven feed pumps were calculated by the Chebyshev curve fit method. A water level controller for the steam generator and a rotary speed controller for the turbine-driven feed pumps were also included in the model. The accuracy of the mathematical models and their controllers was verified by comparing their results with those from a simulator.  相似文献   

6.
The flexibility demand of marine nuclear power plant is very high,the multiple parameters of the marine nuclear power plant with the once-through steam generator are strongly coupled,and the normal PID control of the turbine speed can't meet the control demand.This paper introduces a turbine speed Fuzzy-PID controller to coordinately control the steam pressure and thus realize the demand for quick tracking and steady state control over the turbine speed by using the Fuzzy control's quick dynamic response and PID control's steady state performance.The simulation shows the improvement of the response time and steady state performance of the control system.  相似文献   

7.
Parallel turbine-driven feedwater pumps are needed when ships travel at high speed.In order to study marine steam generator feedwater control systems which use parallel turbine-driven feed pumps, a mathematical model of marine steam generator feedwater control system was developed which includes mathematical models of two steam generators and parallel turbine-driven feed pumps as well as mathematical models of feedwater pipes and feed regulating valves.The operating condition points of the parallel turbine-driven feed pumps were calculated by the Chebyshev curve fit method.A water level controller for the steam generator and a rotary speed controller for the turbine-driven feed pumps were also included in the model.The accuracy of the mathematical models and their controllers was verified by comparing their results with those from a simulator.  相似文献   

8.
The control system determines the effectiveness of an underwater hydraulic shock shovel. This paper begins by analyzing the working principles of these shovels and explains the importance of their control systems. A new type of control system’s mathematical model was built and analyzed according to those principles. Since the initial control system’s response time could not fulfill the design requirements, a PID controller was added to the control system. System response time was still slower than required, so a neural network was added to nonlinearly regulate the proportional element, integral element and derivative element coefficients of the PID controller. After these improvements to the control system, system parameters fulfilled the design requirements. The working performance of electrically-controlled parts such as the rapidly moving high speed switch valve is largely determined by the control system. Normal control methods generally can’t satisfy a shovel’s requirements, so advanced and normal control methods were combined to improve the control system, bringing good results.  相似文献   

9.
[Objective]Aiming at the problem of too many influencing factors and too little reference data for determining the dimensions of medium-sized cruise ships in the concept phase, a simplified multi-objective optimization method based on the fitting of dimensions and performance is proposed. [Method]First, the dimension relations of medium-sized cruise ships are analyzed and the influence of the latest SOLAS requirements used to determine the optimization range. Second, the influence of cruise ship dimensions on space, resistance, stability and seakeeping are analyzed. Next, based on the principles of genetic algorithms, a multiobjective optimization algorithm with high robustness and high engineering adaptability is determined to establish a multi-objective optimization model for the concept design of medium-sized cruise ships. Finally, the Pareto solution obtained by multi-objective optimization is analyzed to provide initial references for determining the dimensions of the target cruise ship. [Results]Implemented via a genetic algorithm, the optimization program proposed herein is applied in the concept design of a medium-sized cruise ship in order to optimize the initial dimensions, thereby achieving the expected outcome of providing reasonable initial dimensions for cruise ship design. [Conclusion ] The proposed simplified multi-objective optimization model can provide feasible initial dimensions for medium-sized cruise ships in the concept phase. As the Pareto solution obtained by multi-objective optimization has different focuses such as resistance and stability, the most suitable solution needs to be selected according to the design object. © 2023 Chinese Journal of Ship Research. All rights reserved.  相似文献   

10.
Modern processing plants use a variety of control loop networks to deliver a finished product to the market. Such control loops,like control valves, are designed to keep process variables such as pressure, temperature, speed, flow, etc. within the appropriate operating range and to ensure a quality product is produced. All control valves have a bypass so that production can proceed if maintenance is needed for the control valve as part of the control loop. The important point is that in both operation and maintenance situations, the bypass valve and the control valve should have approximately the same flow capacity to provide nearly the same amount of pressure. This paper presents a case study in seawater service on the selection of manual bypass valves for a 16″ control valve in class 150 and titanium material. A 16″ butterfly valve of class 150 was chosen for the control valve bypass, which provided a much higher flow capacity than the control valve. In this paper, four solutions are recommended to achieve the same coefficient value(Cv) for the control and bypass valve. Using the reduced size butterfly valve could be the cheapest and best solution. On the other hand, selecting the same control valve for bypass line is the most expensive but maybe the most reliable solution. Using a flow orifice for throttling could be ranked as the second expensive option and the second reliable one. Selection of butterfly valve for throttling is the second cheapest option, but it has the least reliability. Different parameters such as space and weight saving, cost as well as reliability have been considered in evaluation of different solutions.  相似文献   

11.
On August 30 to 31st 2007, Mr. Jin Zhuanglong vice minister of COSTIND on the national shipbuilding work meeting clearly put forward that we should speed up our efforts to promote the strategic transformation of shipbuilding industry, and change our development objective from a large to a strong shipbuilding country. Before this, to fully carry out the "medium and long term development program for shipbuilding industry" and "the eleventh five-year program of shipbuilding development", the COSTIND successively issued the "eleventh five-year development program of ship’ s science and technology", the "eleventh five-year development program of marine equipment industry" and the "action plan of fully establishing modern shipbuilding mode (2006-2010)", which all mapped out the blueprint for making a strong shipbuilding country. In the next f ive to ten years, Chinese shipbuilding industry will sprint toward the shipbuilding power, keeping in mind the following objectives.  相似文献   

12.
The effect of the mass ratio on the flow-induced vibration(FIV) of a flexible circular cylinder is experimentally investigated in a towing tank. A Tygon tube with outer and inner diameters of 7.9 mm and 4.8 mm, respectively, was employed for the study. The tube was connected to a carriage and towed from rest to a steady speed up to 1.6 m/s before slowing down to rest again over a distance of 1.6 m in still water. Reynolds number based on the cylinder's outer diameter was 800–13,000, and the reduced velocity(velocity normalized by the cylinder's natural frequency and outer diameter) spanned from 2 to 25. When connected, the cylinder was elongated from 420 mm to 460 mm under an axial pre-tension of 11 N. Based on the cylinder's elongated length, the aspect ratio(ratio of the cylinder's length to outer diameter) was calculated as 58. Three mass ratios(ratio of the cylinder's structural mass to displaced fluid mass, m*) of 0.7, 1.0, and 3.4 were determined by filling the cylinder's interior with air, water, and alloy powder(nickel-chromium-boron matrix alloy), respectively. An optical method was adopted for response measurements. Multi-frequency vibrations were observed in both in-line(IL) and cross-flow(CF) responses; at high Reynolds number, vibration modes up to the 3rd one were identified in the CF response. The mode transition was found to occur at a lower reduced velocity for the highest tested mass ratio. The vibration amplitude and frequency were quantified and expressed with respect to the reduced velocity. A significant reduced vibration amplitude was found in the IL response with increasing mass ratios, and only initial and upper branches existed in the IL and CF response amplitudes. The normalized response frequencies were revealed to linearly increase with respect to the reduced velocity, and slopes for linear relations were found to be identical for the three cases tested.  相似文献   

13.
[Objectives]To ensure safety and prevent seabed collisions in complex unknown underwater environments, this study proposes a seabed safety domain model and tiered emergency response strategies. [Methods]A vertical motion simulation model is established and verified by surpassing the test results, then used to calculate the active and passive safety domain distance of an autonomous underwater vehicle (AUV), thereby establishing a seabed safety domain model. An AUV emergency control system and emergency strategies are then built on the basis of the dynamic safety domain model. The trim and distance from the seabed of the AUV are used to calculate the current and future risk factors. Based on the weighted sum, the comprehensive risk factor is employed to provide the AUV with emergency response strategies.[Results]Lake tests with the AUV sailing at a fixed depth and height show a strong dependency of the comprehensive risk coefficient on seabed height when it is close to the boundary of the AUV's active safety domain. In the opposite case, there is a weak dependency of the comprehensive risk coefficient on seabed height. The results show that the proposed AUV emergency control system can reduce emergency false alarms caused by frequently changing riverbed heights and sailing altitudes close to the seabed. In such cases, reasonable emergency strategies can be realized under complex rough terrain.[Conclusions]The AUV seabed safety domain model and tiered emergency response strategies based on vertical motion equations proposed herein can be applied to evaluate seabed collision risk in various cases. Finally, this paper provides emergency response strategies to avoid seabed collision accidents, which can enhance the safety of AUV navigation. © 2023 Chinese Journal of Ship Research. All rights reserved.  相似文献   

14.
Direct time-domain simulation of floating structures has advantages: it can calculate wave pressure fields and forces directly; and it is useful for coupled analysis of floating structures with a mooring system. A time-domain boundary integral equation method is presented to simulate three-dimensional water wave radiation problems. A stable form of the integration free-surface boundary condition (IFBC) is used to update velocity potentials on the free surface. A multi-transmitting formula (MTF) method with an artificial speed is introduced to the artificial radiation boundary (ARB). The method was applied to simulate a semi-spherical liquefied natural gas (LNG) carrier and a semi-submersible undergoing specified harmonic motion. Numerical parameters such as the form of the ARB, and the time and space discretization related to this method are discussed. It was found that a good agreement can be obtained when artificial speed is between 0.6 and 1.6 times the phase velocity of water waves in the MTF method. A simulation can be done for a long period of time by this method without problems of instability, and the method is also accurate and computationally efficient.  相似文献   

15.
The creation of geometric model of a ship to determine the characteristics of hydrostatic and hydrodynamic, and also for structural design and equipments arrangement are so important in the ship design process. Planning tunnel high speed craft is one of the crafts in which, achievement to their top speed is more important. These crafts with the use of tunnel have the aero-hydrodynamics properties to diminish the resistance, good sea-keeping behavior, reduce slamming and avoid porpoising. Because of the existence of the tunnel, the hull form generation of these crafts is more complex and difficult. In this paper, it has attempted to provide a method based on geometry creation guidelines and with an entry of the least control and hull form adjustment parameters, to generate automatically the hull form of planning tunnel craft. At first, the equations of mathematical model are described and subsequent, three different models generated based on present method are compared and analyzed. Obviously, the generated model has more application in the early stages of design.  相似文献   

16.
A constructive method was presented to design a global robust and adaptive output feedback controller for dynamic positioning of surface ships under environmental disturbances induced by waves, wind, and ocean currents. The ship’s parameters were not required to be known. An adaptive observer was first designed to estimate the ship’s velocities and parameters. The ship position measurements were also passed through the adaptive observer to reduce high frequency measurement noise from entering the control system. Using these estimate signals, the control was then designed based on Lyapunov’s direct method to force the ship’s position and orientation to globally asymptotically converge to desired values. Simulation results illustrate the effectiveness of the proposed control system. In conclusion, the paper presented a new method to design an effective control system for dynamic positioning of surface ships.  相似文献   

17.
In order to predict acoustic radiation from a structure in waveguide, a method based on wave superposition is proposed, in which the free-space Green's function is used to match the strength of equivalent sources. In addition, in order to neglect the effect of sound reflection from boundaries, necessary treatment is conducted, which makes the method more efficient. Moreover, this method is combined with the sound propagation algorithms to predict the sound radiated from a cylindrical shell in waveguide. Numerical simulations show the effect of how reflections can be neglected if the distance between the structure and the boundary exceeds the maximum linear dimension of the structure. It also shows that the reflection from the bottom of the waveguide can be approximated by plane wave conditionally. The proposed method is more robust and efficient in computation, which can be used to predict the acoustic radiation in waveguide.  相似文献   

18.
A high order boundary element method was developed for the complex velocity potential problem. The method ensures not only the continuity of the potential at the nodes of each element but also the velocity. It can be applied to a variety of velocity potential problems. The present paper, however, focused on its application to the problem of water entry of a wedge with varying speed. The continuity of the velocity achieved herein is particularly important for this kind of nonlinear free surface flow problem, because when the time stepping method is used, the free surface is updated through the velocity obtained at each node and the accuracy of the velocity is therefore crucial. Calculation was made for a case when the distance S that the wedge has travelled and time t follow the relationship s=Dtα, where D and α are constants, which is found to lead to a self similar flow field when the effect due to gravity is ignored.  相似文献   

19.
In this paper, the reduced-order modeling (ROM) technology and its corresponding linear theory are expanded from the linear dynamic system to the nonlinear one, and H∞ control theory is employed in the frequency domain to design some nonlinear system' s pre-compensator in some special way. The adaptive model inverse control (AMIC)theory coping with nonlinear system is improved as well. Such is the model reference adaptive inverse control with pre-compensator (PCMRAIC). The aim of that algorithm is to construct a strategy of control as a whole. As a practical example of the application, the nunlerical simulation has been given on matlab software packages. The numerical result is given. The proposed strategy realizes the linearization control of nonlinear dynamic system. And it carries out a good performance to deal with the nonlinear system.  相似文献   

20.
Dimensional control is one of the most important challenges in the shipbuilding industry.In order to predict assembly dimensional variation in hull flat block construction,a variation stream model based on state space was presented in this paper which can be further applied to accuracy control in shipbuilding.Part accumulative error,locating error,and welding deformation were taken into consideration in this model,and variation propagation mechanisms and the accumulative rule in the assembly process were analyzed.Then,a model was developed to describe the variation propagation throughout the assembly process.Finally,an example of flat block construction from an actual shipyard was given.The result shows that this method is effective and useful.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号