首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Under severe sea wave conditions, the mooring tethers of submerged floating tunnel (SFT) might go slack. It may cause the structure failure during the service lifetime of SFT. The paper investigated SFT dynamics when going through tether slacking and the related snap force under wave conditions. Besides the nonlinearity of fluid drag and of structural geometry for a relative large structure displacement, the problem is characterized by the nonlinearity due to the discontinuity in axial stiffness of the tethers. To include these nonlinearities, the method of Lagrange energy is used to build the governing equations of SFT motion, and a bilinear oscillator is introduced to simulate the mooring tether operating in an alternating slack-taut state. The sensitivities of the occurrence of tether slacking to wave height and wave period are investigated. Results show that at a large wave height SFT tether will go slack and snap force occurs. SFT responses are categorized into three types of state according to the dynamic response characteristics of tether tension. Effects of two fundamental structure parameters, buoyancy-weight ratio (BWR) and inclined mooring angle (IMA), on the dynamic responses of SFT are analyzed. A slack-taut map of SFT tethers is built. It intuitively describes the occurrences of slack and snap force with different combinations of the two parameters. An analytical approach for slack prediction by deriving the slack criterion is provided to reveal the mechanism of the presented slack-taut map. By present research, the authors tried to make their effort to provide an alternative philosophy for SFT structural design on concerning preventing the occurrence of tether slacking and snap force.  相似文献   

2.
Stress evaluation of a submerged floating tunnel (SFT) is an issue important for determining the section dimensions required to resist environmental loads. However, the complex interaction between an SFT and surrounding fluid has confined most research on SFTs to longitudinal global time-history analyses based on Morison's equation [1]. Even though these analyses give sufficient information in the longitudinal direction, too little information about the circumferential direction compels an SFT section to be designed conservatively. This means that SFT design requires additional information on the structural behavior of the tunnel in the circumferential direction for efficient design. Accordingly, a supplementary approach by which to obtain structural responses in the circumferential direction is introduced in this paper. Upon consideration of the static responses equivalent to the dynamic behavior, three-dimensional (3-D) finite-element analyses of an SFT were performed by application of static loads corresponding to dynamic loads equivalent to those of wave, current and earthquake. The validation of each equivalent static load was supported by the results from comparison of the tension forces in mooring lines obtained using OrcaFlex [2] and ABAQUS [3]. These were used mainly for longitudinal dynamic analysis and 3-D stress evaluation, respectively, of an SFT. Based on the stresses obtained in the longitudinal and circumferential directions, the selection of suitable section dimensions for an SFT is considered.  相似文献   

3.
This study investigates the hydroelastic analysis of a moored SFT (submerged floating tunnel) and the corresponding hydrodynamic pressure distribution under wave excitations. Time-domain discrete-module-beam (DMB) method, in which an elastic structure is modeled by multiple sub-bodies with beam elements, is employed to express the deformable tunnel with multiple mooring lines. Moreover, the top-down scheme is also adopted for detailed structure analyses with less computational cost, which applies the calculated hydrodynamic pressure distribution over SFT's surface to the three-dimensional finite element model. The hydrodynamic pressure includes both wave-induced diffraction pressure and motion-induced radiation pressure. For the validation of the developed numerical approach, comparisons are made with computationally intensive hydroelastic-structural direct-coupled method, two-dimensional wave flume experiment, and independently developed inhouse moored-SFT-simulation program. Furthermore, the influences of flexural motions with buoyancy-weight ratio (BWR) (or bending stiffness) and regular/irregular wave conditions on the dynamic pressure distribution and the resulting local stresses are investigated.  相似文献   

4.
Standard design procedures and simulation tools for marine structures are aimed primarily for use by the offshore oil and gas. Mooring system restoring forces acting on floating offshore structures are obtained from a quasi-static mooring model alone or from a coupled analysis based on potential flow solvers that do not always consider nonlinear mooring-induced restoring forces, fluid structure interactions, and associated hydrodynamic damping effects. This paper presents the validation of a dynamic mooring system analysis technique that couples the dynamic mooring model with a Reynolds-averaged Navier-Stokes (RANS) equations solver. We coupled a dynamic mooring model with a RANS equations solver, and analyzed a moored floating buoy in calm water, regular and irregular waves and validated our motion and mooring force predictions against experimental measurements. The mooring system consisted of three catenary chains. The analyzed response comprised decaying oscillating buoy motions, linear and quadratic damping characteristics, and tensile forces in mooring lines. The generally favorable comparison of predicted buoy motions and mooring forces to experimental data confirmed the reliability of our implemented coupling technique to predict system response. Additional comparative results from a potential flow solver demonstrated the benefits of the coupled dynamic mooring model with RANS equations. The successful validated tool of coupling the dynamic mooring model with the RANS solver is available as open source, and it shows the potential of the coupled methodology to be used for analyzing the moored offshore structures.  相似文献   

5.
The cross-section geometry of a submerged floating tunnel (SFT) has a large effect on hydrodynamic characteristics, structural behavior and service level, making the tunnel cross section the primary factor in optimizing efficiency. Minimizing the mean drag and the dynamic variability in the lift of the SFT cross section under bi-directional (i.e., tidal) flow has a dramatic impact on the reduction of structural displacements and mooring loads. Based on a parametric Bézier curve dynamically comprising the leading-edge radius, tunnel height and width to define the SFT geometry, a sensitivity analysis of the Bézier curve parameters for a fixed aspect ratio with prototype dimensions under uniform flow conditions was conducted by applying Computational Fluid Dynamics (CFD), and the pressure distribution around the SFT cross-section surface was analyzed. A theoretical method comprising the Kármán vortex street parameters was employed to verify the CFD simulation results. In order to determine the SFT cross section with optimal hydrodynamic properties, the mean drag and Root Mean Square (RMS) lift coefficients were selected as optimization objectives, and four Bézier curve parameters were the input variables, in a neural network and genetic algorithm optimization process (a hybrid BP-GA structure), which is less likely to become trapped in local minima. The results show the optimal tunnel cross section has a mean drag and a RMS lift coefficient reduced by 0.9% and 6.3%, respectively, compared to the original CFD dataset.  相似文献   

6.
To meet the needs of those exploiting deepwater resources, TLP and SPAR platforms are used in some areas and are considered excellent platforms in deep water. However, many problems remain to be resolved. The design of mooring systems is a key issue for deep water platforms. Environmental loads in deep water effect the physical characteristics of mooring line materials. The configuration and analysis of mooring systems involve nonlinearity due to this fluid-solid coupling, nonlinear hydrodynamic forces, and their effects on stability of motion. In this paper, some pivotal theories and technical questions are presented, including modeling of mooring lines, the theory and method of coupled dynamics analysis on the mooring system, and the development of methodologies for the study of nonlinear dynamics of mooring systems. Further study on mooring systems in deep water are recommended based on current knowledge, particularly dynamic parameters of different materials and cable configuration, interactions between seabed and cable, mechanisms of mooring system response induced by taut/slack mooring cables, discontinuous stiffness due to system materials, mooring construction, and motion instability, etc.  相似文献   

7.
The exploration for renewable and clean energies has become crucial due to environmental issues such as global warming and the energy crisis. In recent years,floating offshore wind turbines(FOWTs) have attracted a considerable amount of attention as a means to exploit steady and strong wind sources available in deep-sea areas. In this study, the coupled aero-hydrodynamic characteristics of a spar-type 5-MW wind turbine are analyzed. An unsteady actuator line model(UALM) coupled with a twophase computational fluid dynamics solver naoe-FOAM-SJTU is applied to solve three-dimensional Reynolds-averaged NavierStokes equations. Simulations with different complexities are performed. First, the wind turbine is parked. Second, the impact of the wind turbine is simplified into equivalent forces and moments. Third, fully coupled dynamic analysis with wind and wave excitation is conducted by utilizing the UALM. From the simulation, aerodynamic forces, including the unsteady aerodynamic power and thrust, can be obtained, and hydrodynamic responses such as the six-degrees-of-freedom motions of the floating platform and the mooring tensions are also available. The coupled responses of the FOWT for cases of different complexities are analyzed based on the simulation results. Findings indicate that the coupling effects between the aerodynamics of the wind turbine and the hydrodynamics of the floating platform are obvious. The aerodynamic loads have a significant effect on the dynamic responses of the floating platform, and the aerodynamic performance of the wind turbine has highly unsteady characteristics due to the motions of the floating platform. A spar-type FOWT consisting of NREL-5-MW baseline wind turbine and OC3-Hywind platform system is investigated. The aerodynamic forces can be obtained by the UALM. The 6 DoF motions and mooring tensions are predicted by the naoe-FOAM-SJTU. To research the coupling effects between the aerodynamics of the wind turbine and the hydrodynamics of the floating platform, simulations with different complexities are performed. Fully coupled aero-hydrodynamic characteristics of FOWTs, including aerodynamic loads, wake vortex, motion responses, and mooring tensions, are compared and analyzed.  相似文献   

8.
文章基于三维时域势流理论和弹性细长杆理论,研究并提出了深海系泊浮体物面非线性时域耦合动力分析方法。该方法采用时域物面非线性理论方法在瞬态位置直接时域模拟系泊浮体所需水动力,结合有限元方法计算系泊缆索的动力响应,利用异步耦合方法实现浮体和系泊缆索的时域耦合动力求解。既满足系泊浮体时域水动力耦合,又满足系泊浮体和系泊缆索动力耦合。通过对二阶非线性不规则波作用下深海系泊半潜式平台的时域耦合响应特性进行研究,将不同海况下物面非线性时域耦合静力响应和动力响应与间接时域耦合动力响应的三种方法计算结果进行比较。研究结果表明,系泊缆索动力响应明显,平台瞬态空间位置对垂荡低频运动影响较大,有必要在平台瞬时湿表面采用动力响应方法进行深海系泊浮体时域耦合响应分析。  相似文献   

9.
The concept of a shared mooring system was proposed to reduce mooring and anchoring costs. Shared moorings also add complexity to the floating offshore wind farm system and pose design challenges. To understand the system dynamics, this paper presents a dynamic analysis for a dual-spar floating offshore wind farm with a shared mooring system in extreme environmental conditions. First, a numerical model of the floating offshore wind farm was established in a commercial simulation tool. Then, time-domain simulations were performed for the parked wind farm under extreme wind and wave conditions. A sensitivity study was carried out to investigate the influence of loading directions and shared line mooring properties. To highlight the influence of the shared line, the results were compared to those of a single spar floating wind turbine, and larger platform motions and higher tension loads in single lines are observed for the wind farm with shared moorings. The loading direction affects the platform motions and mooring response of the floating offshore wind farm. Comparing the investigated loading directions to the 0-deg loading direction, the variation of mean mooring tension at the fairlead is up to 84% for single lines and 16% for the shared line. The influence of the shared line properties in the platform motions and the structural responses is limited. These findings improve understanding of the dynamic characteristics of floating offshore wind farms with a shared mooring system.  相似文献   

10.
针对水中悬浮隧道在偶然状况下受到的潜艇撞击问题,文章采用流固耦合方法,建立了撞击作用下浮筒式悬浮隧道的有限元动态模型,分别撞击跨中、隧道四分之一跨、浮筒,分析隧道变形、撞击力、连接钢管拉杆力、隧道端部约束力、隧道动能情况。结果表明:撞击作用下,隧道整体变形明显,结构内力大。不同撞击位置处,悬浮隧道在水下的结构变形和受力行为区别明显。对此,有必要考虑撞击位置进行悬浮隧道的抗撞击设计。  相似文献   

11.
聚酯缆绳因其质轻、无腐蚀而多用于深海系泊系统。聚酯缆绳的材料非线性决定了在实际工程应用中,轴向刚度表现为非线性特性。针对此特性,以动态时域方法分析聚酯缆绳的数值模型,在风、浪、流的环境载荷作用下,考虑FPSO的耦合作用,对比轴向线性刚度与轴向非线性刚度下的船体运动响应和聚酯缆绳的张力。结果表明,非线性刚度更能准确描述船体真实运动及缆绳的张力变化,对以后优化锚泊系统的设计有着重要的意义。  相似文献   

12.
单点系泊海洋资料浮标的动力分析   总被引:10,自引:0,他引:10  
本文在静力计算的基础上,应用三维势流理论数值计算程序计算浮标体的附加质量(矩)、阻尼系数和所受波浪力。采用美国数据浮标中心(NDBC)提出的分析方法,即将锚泊线动力方程线性化,并考虑到锚泊线与浮标体之间相互耦合的关系,在频率域中对单点系泊浮标进行了动力分析。文中还提出了当锚泊线中间有集中质量(悬挂重量或浮球)时相应的处理方法,因而不仅适用于简单的单点系泊浮标的动力分析,也适用于水平系泊浮标的动力分析。文中对三种典型的海洋资料浮标进行了考核计算,计算结果与试验结果比较有较好的一致性。  相似文献   

13.
环境荷载对系泊系统受力和运动响应起着关键的影响作用,有必要对影响系泊系统的关键环境参数进行深入研究,揭示环境参数对系泊系统的作用和影响机理。基于势流理论,结合大型水动力学软件AQWA,以一种简单的矩形浮箱式结构物为典型示例,根据浮箱基本参数及相关技术要求,考虑张紧式和悬链式两种不同的系泊方式,建立系泊系统动力分析计算模型。结果表明:在讨论范围内,系泊力随着流速、流向、风速等环境参数的增加而增加;对于横荡和横摇,随着流速、风速等环境参数的增加,横荡和横摇曲线呈现增加的趋势;相对而言,张紧式系泊可以更好地保持系泊系统稳定。  相似文献   

14.
In order to understand characteristics of low-frequency motions of ships moored inside ports and harbors, analysis on actual cargo handling logbook of stevedoring services company, including events of interruption of cargo handling, and countermeasure for ship mooring problems are investigated by field observations at two ports and numerical simulation on moored ship motions. First model port concerns with interruption of cargo handling due to the low-frequency motions. Second model port relates to a resonant effect of long-period waves or harbor oscillations, and its countermeasure by mooring system. From the investigation, it is confirmed that the low-frequency motions of ships are induced by a resonance between surge motions and long-period waves or harbor oscillations and an asymmetry in the mooring system, and affect safe ship mooring and operation efficiency of cargo handling in ports and harbors significantly.  相似文献   

15.
The dynamic responses of any floating platform are dependent on the mass, stiffness and damping characteristics of the body as well as mooring system. Therefore, it is very essential to study the effect of individual contributions to the system that can finally help to economise their cost. This paper focuses on the effect of mooring stiffness on the responses of a truss spar platform, obtained by different grouping of lines. The study is part of our present researches on mooring systems which include the effect of line pretension, diameter and azimuth angles. The platform is modelled as a rigid body with three degrees-of-freedom and its motions are analyzed in time-domain using the implicit Newmark Beta technique. The mooring lines restoring force-excursion relationship is evaluated using a quasi-static approach. It is observed that the mooring system with lines arranged in less number of groups exhibits better performance in terms of the restoring forces as well as mean position of platform. However, the dynamic motions of platform remain unaffected for different line groups.  相似文献   

16.
杜度  张纬康  毕毅  王波 《船舶力学》2005,9(2):46-53
对潮流作用下单点系泊船舶的静态分岔特性和动态分岔特性进行了试验研究.通过试验确定了船舶的平衡系泊点及其Liapunov运动稳定性.以来流速度和系缆长度为分岔控制参数,研究了船舶系泊运动的静态分岔与Hopf分岔特性.对系统的动力学行为进行了定性分类,据此在参数空间中给出了局部分岔集.它将参数平面划分为四个不同的区域,每个区域中船舶的运动模式均不相同,但同一区域内系统的动力学行为是一致的.研究表明,单点系泊船舶具有复杂的动力学响应,试验中观察到吸引子的共存与跳跃和Hopf分岔现象.局部分岔集的确定为系泊系统设计参数的选择提供了依据.  相似文献   

17.
海洋工程深水开发浮式系统的耦合计算方法   总被引:6,自引:0,他引:6  
当前海洋深水开发所用的浮式平台系统多为浮式船体与柔性系泊系统及立管系统的耦合体,这样,浮式船体与柔性系统之间必将有相互影响及相互作用.由于其整体系统的非线性及动力学特性,势必要求对深水浮式平台系统进行有效的时域耦合分析计算.本文首先简要介绍时域耦合分析的具体问题及解决方法,然后介绍作者近年来开发的HARP(Hull And Riser Program)耦合计算程序.  相似文献   

18.
卜凡  余龙 《船舶工程》2019,41(6):6-12
本文设计了一种新型的双机对转式海流发电机并对其系泊系统与叶片载荷和直径关系进行模拟分析。首先将单机式海流发电机与已有研究进行对比验证其可靠性,然后在不改变系泊方式的前提下,设计出双机式结构,并通过分析机身位移和旋转比较两种系统的稳定性。为考虑叶片载荷对系泊系统影响,在Orcaflex中对不同精细程度的叶片进行建模,分别对比单一翼型/三翼型/九翼型的数值模拟结果。接着使用M-BEMT软件优化后的翼型参数,对比使用原始升阻力系数的三翼型发电机的模拟结果,同时将使用不同直径叶片的发电机系统进行对比,说明双机式发电机的稳定性更优,对海流发电机及其系泊系统的设计提供重要参考价值。  相似文献   

19.
远海作业锚泊定位大型抓斗船时域耦合分析   总被引:2,自引:2,他引:0  
在环境复杂、作业水深较大的远海开敞海域进行作业时,大型抓斗船需采用锚泊定位方式,且船体运动响应受风浪影响较大。同时,在抓斗提升和旋转过程中,抓斗运动速度快,提升质量大,抓斗出水时全船所受载荷发生瞬时变化,加上复杂环境载荷的作用,对船舶安全具有很大影响。以适用于远海开敞海域、采用锚泊定位方式的200m3级大型抓斗疏浚船为研究对象,建立了船舶的水动力计算模型,对其运动响应RAO和载荷RAO进行了计算分析。考虑船舶主体、抓斗及锚泊系统之间耦合作用的影响,对抓斗作业时提升和旋转过程中船舶运动响应和锚泊线张力进行时域动力分析,得到了该船动力载荷结果,为后续的设计工作提供基础。  相似文献   

20.
Submerged floating tunnel (SFT) is an innovative cable-supported structural system for crossing deep and long-distance ocean environments. In the complex ocean environment, the construction of SFT needs to consider wave and current forces. Specific construction measures and control also require in-depth study and understanding of the dynamic response of SFT under such environmental loads. In this study, the dynamic response of SFT and cable forces under the action of waves alone and wave-current interactions are investigated by using a large wave-current basin. A total of 138 regular wave and wave-current cases were conducted during the experiments, and the influence of waves and wave-current interactions on the dynamic response of SFT and cable forces are discussed in detail by combining experimental data with corresponding analysis. Results show that the wave height, current velocity, and ratio of wavelength to structure size are important factors affecting the dynamic response of SFT and cable forces. The multi-anchor cable arrangement used in the present experimental tests distribute cable force more effectively and reduce the potential safety hazard caused by cable breakage. This study can provide a useful reference for the construction and control of the single SFT segment under construction in a complex ocean environment, especially under the interaction of waves and currents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号