首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
本文针对某采用喷水推进型式的高速船,对其尾部喷水推进区域进行相应的结构加强设计,并分析局部强度及振动强度。运用MSC.Patran软件建立船体包含尾部喷水推进装置在内的有限元模型,综合考虑喷水作用载荷、船底波浪冲击载荷、舷侧载荷等设计载荷,对尾部局部强度及振动进行计算分析,结果符合设计要求,可为类似船型的船体尾部优化设计提供技术参考,具有一定的工程意义。  相似文献   

2.
推进和控制载荷必须从喷水推进装置传递到船体上。喷水推进装置产生的载荷通过艉封板传递到船体上是许多喷水推进装置的基本方式。为此,要求船舶设计师和建造厂对艉封板进行加强。最近船舶建造厂和喷水推进装置制造厂通过分析注意到这样一个事实,即艉封板的横向刚度很强,可以很容易地承受转向载荷,而对艉封板的前、后方向进行加强却很困难。相反,进水充道在前、后方向上刚性很好,因此它能够经常承受大部分的推进载荷。问题是大  相似文献   

3.
浸没式喷水推进方式是传统船舶喷水推进技术的新发展。文中针对该类喷水推进型式,从概念出发,系统分析了推进效率、装置与船体的相互影响、推进泵的比转速,首次建立了以船体与推进装置主要参数描述的比转速及喷水推进船进速系数的数学模型,论证其应用的航速与推进泵比转速范围,揭示其高效机理,并通过案例进行验证。该文掌握了装置主要参数随喷速比与转速的变化规律,为浸没式喷水推进装置的发展应用奠定了理论基础。  相似文献   

4.
船体振动响应预报   总被引:18,自引:1,他引:17  
利用有限元技术对船体总振动、上层建筑整体和各层甲板局部自由振动频率及上层建筑振动响应进行了预报。介绍了用于振动计算的单层甲板模型、尾部上层建筑模型、全船模型和简化全船模型及应用实例。研究了上层建筑和船体之间的耦合影响,并根据具体算例对各种模型化方法的效果进行了评价。  相似文献   

5.
300方耙吸挖泥船振动预报   总被引:1,自引:0,他引:1  
迟少艳  唐丰  洪明 《船舶》2002,(6):29-33
为了在设计阶段有效地控制船体有害振动的出现,根据船舶振动的理论,结合挖泥船激励和结构特点,在方案设计和技术设计阶段对300方耙吸挖泥船主船体总振动分别利用Todd方法和迁移矩阵法进行了预报分析。基于三维空间板梁结构分析模型,用有限元技术对上层建筑甲板局部振动进行了计算,振动主要是通过频率储备来控制,评判标准采用CCS颁布的《船上有害振动的预防》建议值,本文进行的船舶有害振动控制方法可对其他型船设计提供参考。  相似文献   

6.
船舶在航行过程中,螺旋桨在不均匀的伴流场中工作产生周期性的弯曲力矩作用在螺旋桨轴上,使推进轴系在螺旋桨或转轴上旋转的横向力矩作用下,旋转轴绕其静平衡曲线产生振动,从而出现回旋振动现象,而严重的轴系回旋振动引起轴承反力的动力放大而引起船体尾部结构的振动。本文对一艘尾部结构振动严重的船舶进行了推进轴系回旋振动计算分析及实船振动测量验证,分析了推进轴系回旋振动对船体尾部结构振动影响,通过更换尾管前轴承、调整中间轴承的位置,解决了轴系回旋振动引起的船体尾部结构严重振动问题,为解决类似船体尾部振动问题分析提供参考。  相似文献   

7.
李艮田 《航海》2011,(4):67-68
现代结构设计中.结构有限元分析越来越多的用来解决实际工程中遇到的各种问题。有限元计算具有很广泛的适用性,主要应用于大型结构的强度分析.振动分析、稳性分析、响应分析、热力学分析等等。船舶设计阶段也大量采用有限元方法分析船体的总纵强度和局部强度。对“威力”号而言,背拉吊耳、锚机基座、吊机基座和船体尾部结构等都采用了有限元方...  相似文献   

8.
船舶在航行过程中,螺旋桨在不均匀的伴流场中工作产生周期性的弯曲力矩作用在螺旋桨轴上,使推进轴系在螺旋桨或转轴上旋转的横向力矩作用下,旋转轴绕其静平衡曲线产生振动,从而出现回旋振动现象,而严重的轴系回旋振动引起轴承反力的动力放大而引起船体尾部结构的振动.本文对一艘尾部结构振动严重的船舶进行了推进轴系回旋振动计算分析及实船振动测量验证,分析了推进轴系回旋振动对船体尾部结构振动影响,通过更换尾管前轴承、调整中间轴承的位置,解决了轴系回旋振动引起的船体尾部结构严重振动问题,为解决类似船体尾部振动问题分析提供参考.  相似文献   

9.
本文采用简易高效的方法分析了受压缺陷船体板的振动问题。首先应用奇异摄动理论计算受压缺陷板的后屈曲,然后给出后屈曲平衡构形上的微幅振动方程,计算受压缺陷船体板的振动频率,提出了船体板振动频率和轴压、残余应力与残余变形关系的一个显式表达式。探讨了焊接残余变形、残余应力对船体板振动频率的影响。文中给出了计算实例,并与试验结果进行了比较,最后应用随机模拟方法对船体板振动频率的概率分布进行了讨论,表明其概率  相似文献   

10.
结构形式对船体振动的影响分析   总被引:2,自引:0,他引:2  
以船体主机下肋板为例,研究船体振动时船底肋板在频率10~150Hz范围振动剧烈的减振方法。通过改变结构的刚度和阻尼,探讨降低肋板剧烈振动的方法。其中改变结构的刚度,包括改变板厚和安装加强筋等,改变阻尼是通过敷设阻尼层来实现。利用ANSYS有限元软件进行模拟计算,对比分析结构的刚度和阻尼发生变化时肋板的振动变化,得出改变结构的刚度和阻尼都可以对局部振动起到降低振动的效果。从实际应用的经济性考虑,安装加强筋方法最优。  相似文献   

11.
刘长卿  车驰东  闫菲 《船舶力学》2016,20(4):478-486
为了提高船舶尾部模态计算的精度,文章提出了一种尾部详细结构与船体骨架结合的简化有限元模型,应用该模型对某全回转推进船舶尾部模态进行了计算,并将其结果与另外两种传统简化模型(即尾部三维模型与尾部+一维梁混合模型)的计算结果进行了比较。研究发现改进模型与传统模型在尾部局部模态计算中没有明显差别,但对整体模态而言其差异随频率增大而增大。为了进一步验证模型的有效性,在航行过程中对该船舶振动情况进行了测试,并利用运行模态分析法识别尾部整体模态。通过识别结果与计算结果的比较可见,三种模型在基频(1阶弯曲)计算时误差均很小,但是在高阶固有频率计算中改进的模型误差明显小于另两种模型。  相似文献   

12.
中速艇艉部结构振动问题的设计处理   总被引:2,自引:0,他引:2  
本文针对某些中速艇艉部结构振动所出现的问题,分析了其艉部结构振动响应特性,提出了艉部结构振动响应分析有限元模型以及减少艉部结构振动的设计处理措施。  相似文献   

13.
以艉部结构为例,阐述对船体结构进行三维有限元动力分析的基本过程和关键技术。建立艉部结构三维有限元模型,使用Fluent软件计算螺旋桨脉动压力,采用Helmholtz方法计算附连水质量;为了消除局部模态的干扰,使用模态参与因子提取结构的整体模态;计算结构的固有频率、模态、速度和加速度等动力学参数。实例分析表明所采用的分析方法能够准确预报结构的振动特性。  相似文献   

14.
避振穴是一种减小船舶尾部振动的重要装置,本文采用基于橡胶材料超弹性和空气压缩性的非线性有限元方法对其进行数值模拟和隔振特性分析。选取Mooney-Rivlin模型对橡胶材料非线性特性进行模拟,建立气体单元模拟加压空气,对一个独立密闭气室结构进行充气过程模拟和振动响应计算,分析气室深度、初始气压和橡胶板厚度等参数对其隔振特性的影响。将避振穴应用于实船尾部模型,验证其对螺旋桨激振力的隔振效果。计算结果表明,避振穴对于船舶尾部减振具有显著效果,但需要留意其在低频共振区引起的响应增大情况。  相似文献   

15.
船舶艉导管振动性能研究   总被引:2,自引:0,他引:2  
针对35000吨油轮艉部导管产生裂纹,该文采用有限元法和流体边界元法对舰舶艉部导管进行振动性能预报,并结合振动试验,为减少导管的振动提供了良好的手段。并取得了一定的效果。  相似文献   

16.
为更好地了解轴系振动对舰船声辐射的影响,以某台架轴系为研究对象,基于Workbench软件建立仿真分析,对轴系回旋振动涡动频率及响应和轴系振动对轴承基座的影响进行研究。研究表明,有限元法计算所得回旋振动的固有频率与传统的传递矩阵法结果一致。通过轴系激励力的分析,给出有限元法回旋振动响应的分析方法,获取轴系振动的位移响应。提取轴承处频域激励力施加于尾轴承上,得到尾轴承基座上点的振动响应加速度。设计台架测试方案,通过试验验证轴系振动的位移响应和轴承基座振动加速度响应计算的正确性。基于有限元的轴系回旋振动涡动频率及响应提出的计算方法,可为推进轴系振动对舰船声辐射的研究提供一定的理论指导。  相似文献   

17.
水润滑形式的尾轴承广泛运用于舰船推进轴系,其摩擦、润滑与振动等特性对舰船声隐身性能有较大影响,国外海军强国对这一问题进行了系统深入的研究,研制了先进的水润滑尾轴承产品,很好地解决了舰船轴系的摩擦诱导振动噪声问题。本文综述国外舰船水润滑尾轴承发展历程与现状,对水润滑尾轴承发展过程中产生的关键性降噪技术进行系统分析,对国内舰船水润滑尾轴承的发展方向提出建议。  相似文献   

18.
滑行艇尾部结构的模态分析和响应预报   总被引:1,自引:1,他引:0  
针对某滑行艇尾部结构振动问题,建立尾部结构三维有限元模型,应用MSC.Patran/Nastran软件对其进行模态分析和响应预报。其中,采用虚拟质量法模拟流体与结构相互作用来计算附连水质量;运用瞬态响应分析方法计算螺旋桨脉动压力引起的尾部结构振动响应。通过分析获得该艇尾部结构的振动特性,为结构减振设计提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号