首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
公路运输   1篇
水路运输   2篇
铁路运输   4篇
  2023年   1篇
  2022年   1篇
  2019年   1篇
  2018年   2篇
  2010年   1篇
  2008年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
研究目的:填料性质是影响路基填筑质量的重要因素,路基不同结构层位对填料应有合理的材质指标要求。基于点荷载试验换算的饱和单轴抗压强度,对风化程度不同的软质千枚岩试样进行分组,分别开展物理、水理和力学性质试验,研究工程特性与饱和单轴抗压强度之间的关系,分析软质千枚岩填料用于路基填筑的适用性,提出铁路路基各层位填料的材质指标建议值。研究结论:(1)软质千枚岩作为石质填料用于铁路路基基床表层填筑时,母岩饱和单轴抗压强度Rc≥25 MPa,压碎值CA 16%,洛杉矶磨耗率LAA≤40%,岩块具有极高等耐久性;(2)用于基床底层填筑时,相应的Rc≥20 MPa,CA 18%,LAA≤50%;(3)用于基床以下路堤填筑时,可取R_c≥15 MPa,CA 20%,LAA≤55%,此时,岩块仍具有高等耐久性;(4)本研究成果可为完善铁路路基工程的设计和施工技术提供借鉴或参考。  相似文献   
2.
为提高燃气轮机的可靠性、可用性以及可维护性而进行的寿命预估与减损控制研究,需要对燃气轮机的关键零部件进行结构特性分析。对舰船燃气轮机涡轮叶片在紧急升工况载荷谱下的应力应变状态进行了三维热流固耦合有限元分析,针对典型载荷谱计算了涡轮叶片应力应变的变化规律,对涡轮叶片材料进行了控制应变试验,为叶片寿命预测提供了必要的参数。根据应力应变分析结果利用Basquin公式和Manson-Coffin公式计算了2个危险点处的疲劳裂纹起始寿命。并根据分析结果对涡轮叶片进行了寿命预测,预测结果可以作为燃气轮机使用维修的参考依据。  相似文献   
3.
方东  罗强  朱江江  薛猛 《路基工程》2018,(6):127-131
以蒙华重载铁路岳阳至吉安段软质岩填料为研究对象,通过一系列室内试验,对其作为重载铁路基床以下路堤填料的工程性质进行了研究。结果表明:软质岩的矿物成分主要为石英,含有较多次生矿物,使其具有一定黏聚性,全风化软质岩属于D组填料;增加软质岩填料的压实度或进行水泥改良能有效提高其抗剪强度和抗渗透能力,并降低压缩性;对软质岩进行3.0%的水泥改良或4.5%的石灰改良后,其无侧限抗压强度能够满足规范对于重载铁路基床以下路堤的强度要求。  相似文献   
4.
研究目的:蒙华重载铁路岳阳至吉安段软质岩填料占全线挖方总量近七成,设计采用全风化软质岩作为基床以下路堤填料。为得到全风化软质岩填料现场填筑时的合理含水率、松铺厚度和压实工艺,通过室内土工试验分析其基本物理力学性质,并开展现场填筑试验研究其作为基床以下路堤填料的碾压施工关键控制参数及工艺。研究结论:(1)全风化软质岩填料的矿物成分中含有高达17. 3%的富铁白云母,液限wL=42. 1%≥40%,塑性指数Ip=14. 0,为高液限粉质黏土,属于D组填料;(2)现场填筑时,控制松铺厚度h≤0. 35m、含水率w∈(wopt-3%,wopt),能达到地基系数K30≥80 MPa/m的设计要求,对应的压实系数K≥0. 95;(3)提出了全风化软质岩填料的合理碾压组合方式,即静压2遍+弱振1遍静压1遍+强振1遍静压1遍+静压2遍;(4)试验得出的结论可指导全风化软质岩在我国铁路路基工程中的应用。  相似文献   
5.
研究目的:大量实践证明采用高压喷射注浆方式进行桥梁纠偏是一条切实可行的技术措施.通过分析地基处理桥梁纠偏原理,建立水泥浆射流冲蚀破坏土体理论模型,基于高压射流理论,以纠偏量最大、回弹量最小、纠偏效果最优为基本求解条件,推导纠偏施工关键控制参数表达式,确定钻杆最佳旋转速度和提升速度,以及水泥浆液喷嘴出口压力和水灰比,并以...  相似文献   
6.
在分析疲劳可靠性设计中常用的两种二维随机疲劳干涉模型的基础上,考虑应力比变化的影响,提出了一种新的干涉模型,并通过具体的算例对它们的结果进行了比较,结果表明:与传统的二维随机疲劳干涉模型相比,新的模型在疲劳可靠性设计时既能够降低设计的危险性又可以提高经济性.  相似文献   
7.
受周边环境变化及人类工程活动等多种因素影响,部分高铁桥梁地段出现了较大的横向偏移。为获得运营高铁箱梁顶升平移纠偏施工中的关键控制参数,通过建立轨-梁-墩实体数值模型,分析不同工况下轨道结构的应力变化规律,提出单次最大顶升及平移量;同时选取施工期间最不利工况,检算不同偏移量下轨道结构的稳定性。研究表明:随着顶升高度和平移量增加,轨道结构应力逐渐增大,为尽量减小纠偏施工对轨道结构的影响,建议最大顶升高度和单次最大平移量为10 mm,单个“天窗点”累计平移量控制在20 mm以内;箱梁和桥墩应力以及支座反力随支座支撑状态和偏移量的增大逐渐增加,以箱梁拉应力和支座反力作为控制条件,在不降速运行情况下,为保证轨道结构的稳定性,可实施的最大纠偏量为80 mm。本研究成果可为运营高铁箱梁顶升平移纠偏施工提供关键控制参数及理论依据。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号