首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
公路运输   1篇
  2017年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
Transit Signal Priority (TSP) and Bus Rapid Transit (BRT) are innovative Intelligent Transportation System (ITS) tools that can reduce travel times for buses. Combining TSP and BRT can significantly improve bus travel, but can negatively impact network traffic operations. Although TSP has been implemented worldwide, few previous studies holistically examined the effects of using various conditional and unconditional TSP strategies with or without a BRT system. This research simulates multiple TSP and BRT combination scenarios to understand their impact on traffic operations, including crossing street traffic. A test bed along International Drive (I-Drive) in Orlando, Florida, was chosen as the simulation area. Field data collected for this test bed, which included traffic volumes, bus travel times, and traffic signal control data, were used to develop, calibrate, and validate the simulation model. Results showed that BRT with Conditional TSP 3 minutes behind significantly improved travel times, average speed, and average total delay per vehicle for the main through movements compared with no BRT or TSP, with only minor effects on crossing street delays. BRT with Unconditional TSP resulted in significant crossing street delays, especially at major intersections with high traffic demand, indicating that this scenario is impractical for implementation. The simulation suggests that BRT and TSP will be most effective when used in areas where crossing street volumes are low. However, it is unknown how these ITS tools affect pedestrian traffic. Using optimization methods can determine the best strategy to balance transit and pedestrian traffic.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号