首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   2篇
公路运输   3篇
综合类   2篇
  2022年   2篇
  2021年   2篇
  2019年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
在河谷地区修建桥梁桩基础时,常会遇到因桥台后高路基填土而导致路基一侧桩基础发生偏位的工程事故,尤其是当地基土中存在软弱土层时,发生事故的可能性大大增加。为探明刚性长短桩在处理侧方路基填土下软弱土层时的应用效果,研究不同因素对刚性长短桩处理效果的影响以及采用刚性长短桩处理对高路基填土侧桩基础的影响,依托马里河II桥实体工程,采用数值模拟软件Marc分析了不同布置形式和不同处理距离下的刚性长短桩对填土侧桩基础受力分布特性的影响,对不同工况的处治效果进行了工程评价并依此提出了相关的工程建议。结果表明:堆载作用下,软弱土层的侧向挤压变形对桩身位移、桩侧土抗力和桩身弯矩等均有明显影响,桩身位移在16 m(即软土层与强风化岩层的分界面)处出现明显拐点,桩侧土抗力和桩身弯矩在16 m处达到最大值;不同距离下的桩基桩身位移等各项数值变化规律基本一致但影响程度大小不同,最靠近堆载外侧的桩处于最不利位置,设计时可适当提高边侧桩基的承载性能;梅花桩布置形式的刚性长短桩相较于正方形布置和交错布置对减少软弱土层侧向挤压变形对桥梁桩基础影响的效果最显著;梅花形布置形式的加固区在不同处理距离下的处治效果差异显著,加固区处理距离范围不宜距离桩基础过近,也不宜过远,8 m左右距离的处理效果最优。  相似文献   
2.
为研究强震作用下群桩基础抗液化性能优于单桩基础的具体表现形式,依托海南省海文大桥工程,采用振动台模型试验开展单桩、四桩、六桩基础处理液化地基的差异性研究,分析了3种不同工况下饱和粉细砂土层中孔压比、桩身加速度和弯矩时程响应差异及其三者相互关系。研究结果表明:0.35g地震动荷载作用下,3种工况均产生液化现象,饱和粉细砂土层深处的孔压比开始增长时刻及稳定时刻均滞后于浅层;六桩基础完全液化耗时比四桩基础延缓4.41~4.82 s,四桩基础完全液化耗时比单桩基础延缓4.00~4.42 s;随着桩数的增加,同一深度处饱和粉细砂土层中桩身最大加速度及其放大系数均逐渐减小,桩身最大加速度出现时刻逐渐滞后,且随着孔压比的增大,桩身加速度逐渐减小;六桩基础最大弯矩较四桩基础小25.95%~43.50%,四桩基础最大弯矩较单桩基础小28.80%~33.10%,单桩基础最大弯矩出现时刻比四桩基础早1.22~1.27 s,四桩基础较六桩基础提前0.66~0.72 s,且桩身弯矩随孔压比的增大逐渐衰减,说明液化前饱和粉细砂土层具有软化减震作用。可见,六桩基础抗液化性能优于四桩及单桩基础,在液化土层桩基础抗震设计中,可通过群桩基础形式提高其抗液化性能。   相似文献   
3.
以广那高速公路K0+110大桥24-1号桩基出现的特大型岩溶空洞为例,针对岩溶空洞影响下的桩基安全性进行分析,提出采用“钢筋混凝土+浆砌片石”双层护壁的施工方法。利用有限元分析软件,建立桩-岩溶-岩土体相互作用模型,通过分析护壁前后桩基的桩顶沉降、竖向承载力、桩端承载力及桩侧摩阻力等参数,验证该施工方法的可行性,为类似工程提供借鉴经验。  相似文献   
4.
为研究陡坡—岩溶耦合作用对桩基竖向承载特性的影响,基于现行规范中的桩基极限承载力标准值公式,采用Marc有限元软件对4种顶板厚度、5种坡度进行正交模拟试验,分别提出了针对顶板厚度和坡度对于桩基竖向分项承载力的修正系数。试验结果表明,桩基极限承载力随坡度增大而逐渐减小,坡度大于45°时,减幅达到29.83%;当顶板厚度大于3倍桩径后,继续增加顶板厚度对桩基极限承载力的提高效果不大,稳定在19%左右。根据计算结果分析桩基竖向分项承载力占比的变化规律,提出了同时考虑顶板厚度和坡度的桩基竖向极限承载力标准值的计算公式以及修正系数αi、β。  相似文献   
5.
为探明强震作用下断层上、下盘桥梁桩基动力响应差异,依托海南省海文大桥工程,通过振动台模型试验,研究了0.15g~0.60g地震动强度作用下断层上、下盘桩基的桩身加速度、桩顶相对位移、桩身弯矩响应规律差异与桩基损伤特征。研究结果表明:在不同地震动强度作用下,断层上、下盘桩基的桩顶加速度峰值相差0.291~0.488 m·s-2,桩顶加速度放大系数相差0.067~0.195,原因为断层对两侧岩土体影响范围存在差异与桩周岩土体“非线性”差异;随着地震动强度的增大,断层上、下盘桩基的桩顶相对位移差值逐渐增大,最大差值为0.77 mm;断层上、下盘桩基的弯矩最大值相差5.294~82.932 kN·m,且弯矩最大值均出现在覆盖层软硬土交界面与基岩面附近,原因在于下盘作为稳定盘,受上盘土体挤压作用,对下盘岩土体的振动剪切有一定抑制作用;地震动强度为0.35g时,断层上、下盘桩的最大弯矩均未超过抗弯承载力,满足海文大桥抗震设防烈度Ⅷ度(0.35g)的要求;地震动强度为0.35g~0.45g时,断层上盘桩的基频变化幅度较小,地震动强度为0.50g~0.60g时,断层上盘桩的基频显著降低,在桩顶与承台连接处、软硬土层界面与基岩面附近出现裂缝,说明此时桩基已发生损伤。可见,断层上盘桩基的桩身加速度峰值、桩顶相对位移与桩身弯矩动力响应指标均大于下盘桩基,断层上、下盘桩基动力响应变化规律差异显著,体现出显著的“断层上盘效应”,因此,强震作用下近断层桥梁桩基础抗震设计时,应着重考虑断层上盘桩基础的抗震承载能力。   相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号