首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
综合类   2篇
  2017年   2篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
The rate equations and the power evolution equations based on excited state absorption (ESA) and cooperative upconversion (CUC) of high concentration erbium-doped yttrium aluminum garnet (YAG) transparent ceramic waveguide amplifier are set up to analyze the effects of the pump power, active ion concentration and waveguide length on the amplifier gain and noise figure (NF). The numerical analysis predicts that with a pump power of 100mW, an active ion concentration of 1.0×1026 ion/m3 and a waveguide length of 3 cm, a small-signal gain of 30 dB and an NF of 5 dB can be achieved in the micro-chip amplifier.  相似文献   
2.
The rate equations and power evolution equations of erbium-doped telluride glass fiber amplifier for both 1.530 and 2.700 μm lasers are solved numerically, the dependences of gain spectra on fiber length, dopant concentration and pump power are analyzed, and the gain of 2.700 μm laser is calculated and compared with the experimental result from reference. The numerical analysis shows that with 8 × 1024 ion/m3 erbium ion concentration, 5m fiber length and 600mW pump power, the gains at 1.530 and 2.700 μm may achieve 23dB or so. With larger power pump and higher dopant concentration, a net gain of 17 dB is obtained from the Er3+-doped telluride glass fiber amplifier for 110mW input signal. This fiber amplifier is promising for both 1.530 μm signal amplification and 2.700 μm laser amplification.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号