首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2726篇
  免费   32篇
公路运输   432篇
综合类   901篇
水路运输   862篇
铁路运输   147篇
综合运输   416篇
  2024年   3篇
  2023年   3篇
  2022年   30篇
  2021年   36篇
  2020年   22篇
  2019年   11篇
  2018年   346篇
  2017年   298篇
  2016年   261篇
  2015年   29篇
  2014年   30篇
  2013年   53篇
  2012年   98篇
  2011年   272篇
  2010年   276篇
  2009年   124篇
  2008年   222篇
  2007年   189篇
  2006年   55篇
  2005年   100篇
  2004年   67篇
  2003年   89篇
  2002年   51篇
  2001年   27篇
  2000年   14篇
  1999年   7篇
  1998年   6篇
  1997年   6篇
  1996年   6篇
  1995年   9篇
  1994年   4篇
  1993年   3篇
  1992年   2篇
  1991年   4篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
  1981年   1篇
  1978年   1篇
排序方式: 共有2758条查询结果,搜索用时 990 毫秒
1.
Initial alignment technology is directly related to the navigation accuracy and startup time of the strap-down inertial navigation system (SINS), and has always been regarded as a challenging focal point in the research field of inertial navigation. This paper makes a comprehensive survey of SINS initial alignment technology, briefly introduces the basic principles of initial alignment without latitude, coarse alignment with known latitude and precise alignment, and points out their advantages, disadvantages and applicable conditions. The research and effects of existing initial alignment error suppression techniques are then analyzed and discussed. Finally, according to the problems of existing initial alignment methods and the development requirements of the carrier, the future research direction of SINS initial alignment technology is predicted. © 2022 Journal of Clinical Hepatology. All rights reserved.  相似文献   
2.
CRH(China Railway High Speed)动车组高速列车已成为我国最重要的交通工具,而高速列车牵引电机的可靠性对于保障列车安全运行具有重要意义.提出一种基于改进双曲交点算法的参数估计方法,采用双曲交点作为搜索点,通过约束条件限制搜索点的数目,并在参数估计过程中改变控制参数调节算法的自适应性,以提高参数估计的效率和准确率.以CRH2高速列车牵引电机为模型,基于数学模型在Matlab/Simulink中建立仿真模型,结合所提出的算法进行参数估计.研究结果表明,提出的参数估计方法,能够有效地提高电机故障诊断效率并准确诊断电机定子绕组故障,验证了所提算法的有效性.  相似文献   
3.
Oceanographic survey, or other similar applications should be the applications of multiple AUVs. In this paper, the skill & simulation based hybrid control architecture (S^2BHCA) as the controller's design reference was proposed. It is a multi-robot cooperation oriented intelligent control architecture based on hybrid ideas. The S^2BHCA attempts to incorporate the virtues of the reactive controller and of the deliberative controller by introducing the concept of the "skill". The additional online task simulation ability for cooperation is supported, too. As an application, a multiple AUV control system was developed with three "skills" for the MCM mission including two different cooperative tasks. The simulation and the sea trials show that simple task expression, fast reaction and better cooperation support can be achieved by realizing the AUV controller based on the S^2BHCA.  相似文献   
4.
深水救生潜器对接系统液压绞车是载人潜器上不可缺少的救生设备之一。其机械系统要求体积小,重量轻,且具有低转速、大扭矩的工作特性;控制系统要求收放绳能自动检测、显示,极限绳长时能自动控停、报警,且有掉电保护等功能。本文主要从机械系统和控制系统两个方面介绍该液压绞车的基本原理、结构、误差处理方法及试验情况。  相似文献   
5.
Among all environmental forces acting on ocean structures and marine vessels, those resulting from wave impacts are likely to yield the highest loads. Being highly nonlinear, transient and complex, a theoretical analysis of their impact would be impossible without numerical simulations. In this paper, a pressure-split two-stage numerical algorithm is proposed based on Volume Of Fluid (VOF) methodology. The algorithm is characterized by introduction of two pressures at each half and full cycle time step, and thus it is a second-order accurate algorithm in time. A simplified second-order Godunov-type solver is used for the continuity equations. The method is applied to simulation of breaking waves in a 2-D water tank, and a qualitative comparison with experimental photo observations is made. Quite consistent results are observed between simulations and experiments. Commercially available software and Boundary Integral Method (BIM) have also been used to simulate the same problem. The results from present code and BIM are in good agreement with respect to breaking location and timing, while the results obtained from the commercial software which is only first-order accurate in time has clearly showed a temporal and spatial lag, verifying the need to use a higher order numerical scheme.  相似文献   
6.
At present, the method of calculating the turbulent flow width around the bridge pier is not given in the "Standard for Inland River Navigation" (GB50139-2004) in China, and the bridge designer usually increases the bridge span in order to ensure the navigation safety, which increases both of the structural design difficulty and the project investments. Therefore, it is extremely essential to give a research on the turbulent flow width around the bridge pier. Through the experiments of the fixed bed and the mobile bed, the factors influencing the turbulent flow width around the bridge pier have been analyzed, such as the approaching flow speed, the water depth, the angles between the bridge pier and the flow direction, the sizes of bridge pier, the shapes of the bridge pier, and the scouring around the bridge pier, etc. Through applying the dimension analytic method to the measured data, the formula of calculating the turbulent flow width around the bridge pier is then inferred.  相似文献   
7.
 This article presents a mixed method of analyzing shell elements and solid elements using the overlaying mesh method. In the structural design of a ship's hull, the shell elements are used for the global model. However, the solid elements are necessary to analyze the stress concentration zones or the vicinity of a crack. In such cases, the models are analyzed using zooming analysis, in which the results of a global model analysis are transferred to a local model analysis by imposing boundary conditions. This method is more advantageous than zooming analysis in terms of the accuracy of the solution and the modeling flexibility. Some examples of a plate model with a cracked surface or with a projection are shown in order to demonstrate the effectiveness of the method. Received: August 6, 2002 / Accepted: November 25, 2002 Address correspondence to: S. Nakasumi (sumi@nasl.t.u-tokyo.ac.jp) Updated from the Japanese original, which won the 2002 SNAJ prize (J Soc Nav Archit Jpn 2001;189:219–224; and 190:655–662)  相似文献   
8.
EFFECTOFLIGUSTRAZINEONHEMODYNAMICSOFMESENTERICCAPILLARYINHEMORRHAGICSHOCKINRABBITSYueYili;ChangLigong;ZhouHongwei;(Department...  相似文献   
9.
In this paper, a smart crank and slider mechanism is analyzed mostly from a dynamic view. By means of dynamic explicit finite element method, 3D nonlinear structure is simulated. It is proved that the mechanism can effectively accomplish smart movement prescribed. And in order to ensure reciprocal movement with higher frequency, measures should be taken to avoid over heating of parts. Compared with internal energy, kinetic energy of total rigid body is dominating, and Y direction equivalent rigid velocity is much higher than X direction velocity. Equivalent rigid velocity of all parts is consistent with respective movement condition. For both energy and velocity, slider effect is dominating. Three direction equivalent inertia force oscillates. Force amplitude in Y -direction is comparitively the greatest.  相似文献   
10.
This paper presents the results of an investigation into temporal determinants of maritime accidents based on a data-set obtained from the proceedings of formal inquiries in the former German Democratic Republic (GDR). The results show that there is no statistically significant outcome between the probability for an accident and the time of watch. Thus the results do not confirm previous studies, which reported significant time of day effects.The outcome of this study indicates that marine inquiries can provide useful data for an analysis of underlying causes of maritime accidents. It is suggested that accident inquiries should be extended into the area of watch systems employed and should record the hours of work and of rest of the officers on the watch involved in a maritime accident.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号