首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
水路运输   2篇
  2013年   1篇
  1999年   1篇
排序方式: 共有2条查询结果,搜索用时 14 毫秒
1
1.
Nowadays,there are many studies conducted in the field of marine hydrodynamics which focus on two vessels traveling and floating in sufficiently close proximity to experience significant interactions.The hydrodynamic behavior of parallel moving ships in waves is an interesting and important topic of late.A numerical investigation has been carried out for the prediction of wave exciting forces and motion responses of parallel moving ships in regular waves.The numerical solution was based on 3D distribution technique and using the linear wave theory to determine the exciting forces and ship's motion.The speed effects have been considered in the Green function for more realistic results.The numerical computations of wave exciting forces and motion responses were carried out for a Mariner and Series 60 for the purpose of discovering different Froude numbers and different separation distances in head sea conditions.Based on the numerical computations,it was revealed that the sway,roll and yaw have a significant effect due to hydrodynamic interaction.  相似文献   
2.
On the hydroelastic responses of a very large floating structure in waves   总被引:1,自引:0,他引:1  
New numerical methods are presented for hydroelastic analyses of a very large floating structure (VLFS) of several kilometers length and width. Several methods are presented that accelerate computation without an appreciable loss of accuracy. The accuracy and efficiency of the proposed methods are validated through comparisons with other numerical results as well as with existing experimental results. After confirming the effectiveness of the methods presented, various characteristics of the hydroelastic behavior of VLFSs are examined, using the proposed methods as numerical tools. Received for publication on Dec. 3, 1999; accepted on Dec. 15, 1999  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号