首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
This paper deals with the dynamic response and strength of very large floating structures (VLFS) in regular and irregular waves, considering the propagation of the hydroelastic deflection wave of the structure. First, a simplified estimation method is presented for the dynamic response and strength of the structure in regular waves. Then, the validity of the method is demonstrated by comparing its results with analytical results and experimental results for a mat-type floating structure model. Next, a simplified estimation method for dynamic responses under long crested irregular wave conditions is presented by using the above results and by combining them with irregular sea wave spectra. Finally, the applicability of the method is investigated through numerical examples carried out for a 4,800-m class VLFS under trial design. Characteristics of the hydroelastic waves, short-term responses, and reliability levels are numerically identified. Received for publication on April 14, 1999; accepted on Sept. 10, 1999  相似文献   

2.
超大型海洋浮式结构物(VLFS)在利用海洋空间和开发海洋资源方面有着很大的实用价值.但如何精确有效地计算和预报其在波浪中的水弹性响应是设计过程中的一个非常重要的技术问题.目前,很多学者提出了不同的简化方法来预报VLFS的水弹性响应.文章全面地介绍了关于计算VLFS水弹性响应的解析方法和数值方法的研究现状,并将相应的数值结果与已有的试验数据相比较,进行了分析讨论.  相似文献   

3.
As for the hydroelastic response of a flexible floating body, various kinds of simplified analytical and numerical methods based on the different assumption have been developed, however, the most versatile and applicable approach is the three-dimensional hydroelasticity theory. Currently, most studies mainly focused on the wave condition of head seas without taking the differences for the variation of the incident wave angle into account. In this paper, based on the three-dimensional hydroelasticity theory, an investigation into the variation of the hydroelastic response for different incident wave angles is presented; also some comparisons are demonstrated and discussed.  相似文献   

4.
The objective is to find slamming-induced local stresses in the steel or aluminum wetdeck of a multihull vessel. This is studied theoretically by representing the wetdeck as a beam model and accounting for dynamic hydroelastic effects. Two numerical methods are used, one being a simplified asymptotic solution. Satisfactory agreement between the two methods is reported. Experimental drop tests of horizontal elastic plates of steel and aluminum are also reported, and the results from the experiments agree well with the numerical computations. This study reveals, both numerically and experimentally, that slamming-induced local stresses are strongly influenced by dynamic hydroelastic effects. The maximum bending stresses are insensitive to where waves hit, the curvature of the waves, and maximum pressures. Measured maximum pressures are very sensitive to external conditions, and cannot be used as a measure of maximum local bending stresses. A simple procedure for local design stresses due to wetdeck slamming is outlined.  相似文献   

5.
This is Part II in a series of papers. Part I [1] investigated the slamming responses of flexible flat stiffened steel and aluminum plates using the nonlinear explicit finite element code LS-Dyna with the Multi-Material Arbitrary Lagrangian-Eulerian (MMALE) solver. Subsequently, a simplified finite element FSI model of water hitting structures that is realistically close to the slamming phenomenon occurring on the bottom part of offshore structures was proposed. The proposed FSI methodology presented in Part I was verified by comparison with the relevant test data. It was evident that the use of the proposed numerical method presented in Part I was very effective for a benchmarking investigation of slamming load considering the hydroelastic effect. However, the method required much effort in terms of computation time and power analysis resources. The present study, Part II, aimed, as an alternative to the FSI analysis approach, to develop empirical formulae for prediction of slamming loads acting on deformable flat stiffened plates used in marine applications. This paper begins by describing the limitations of the existing approaches based on theoretical, experimental and even numerical studies conducted in the past for estimation of slamming loads. Next, it presents, based on the simulation methodology developed in Part I, rigorous parametric studies that had been performed on actual scantlings of marine-seagoing structures. The effects of structural geometry and water impact velocity on slamming pressure are then investigated in detail. Subsequently, the parametric results are analyzed and utilized to derive empirical formulations for the prediction of slamming loads acting on flat stiffened plates of marine structures. The accuracy and reliability of the proposed formulations are established by comparison with the results of the test and other existing formulations. The proposed formulations are expected to be used for the purposes of the design without any time-consuming FSI analysis of advanced and optimal structures that are robust to slamming.  相似文献   

6.
This paper deals with the dispersion relation of hydroelastic waves in pontoon-type very large floating structures (VLFS) using a simple beam modeling, where the term hydroelastic waves means propagation of deflection vibrations in VLFS. The purpose of this paper is to show the properties of the hydroelastic waves. The dispersion relation of hydroelastic waves propagating in an infinite plate floating on the water is derived based on the linear water wave theory. The effects of the water depth and of the bending rigidity of the floating plate on the wavelength, phase velocity, and group velocity of the hydroelastic waves are shown theoretically or numerically. Then, the dispersion relation of hydroelastic waves in a finite plate floating on shallow water is investigated. It is shown that the wavelength or the phase velocity of the hydroelastic waves varies with the location in the plate. Received for publication on April 7, 1999; accepted on Aug. 20, 1999  相似文献   

7.
箱式超大型浮体水弹性分析的弹性地基梁法   总被引:2,自引:0,他引:2  
如何快速而精确地估计箱式超大型浮体在波浪中的水弹性响应是设计中需要解决的一个重要问题。在所提出的各种简化分析方法中,弹性地基梁模型是最简单的。本文选择了四种弹性地基梁模型进行比较研究。它们分别称为S_Y_BOEF,T_BOEF,S_BOEF和A_BOEF模型。通过研究发现,由Suzuki和Yoshida提出的S_Y_BOEF模型显得太保守而不适合于实际应用,而其它三种模型是能够合理地估计箱式超大型浮体的水弹性响应的。相比而言,由S_BOEF模型延伸出的A_BOEF模型从概念上的一致性和精度方面都是最好的。弹性地基梁模型的最大优点是简单,可以很方便地在工程设计中应用。  相似文献   

8.
This paper presents an effective scheme for calculating the wave-induced hydroelastic response of a pontoon-type very large floating structure (VLFS) when it is near a breakwater. The basic numerical calculation method is the one previously developed by the same author for a VLFS in the open sea (no breakwater), which is expanded to include the effect of the hydrodynamic mutual interaction between the breakwater and the floating structure. The efficiency and accuracy of the proposed method are validated through comparisons with other numerical results and with existing experimental results. After that confirmation, various numerical calculations were conducted, paying special attention to the resonance phenomena which will occur depending on the relation between the wavelength and the clearance between the breakwater and the floating structure. The irregular frequency phenomenon which appears in the calculation of the fluid dynamic problem is discussed in the appendices, including a method for its elimination. Received: October 31, 2000 / Accepted: December 19, 2000  相似文献   

9.
海上极端波因其巨大的波高常常导致船体的极限破坏。该文提出了一个二维的修正水弹性方法来研究一个集装箱船船体梁在极端波中的动态前极限强度。传统的极限强度评估基于准静态方法,没有动态效应被考虑。而船体在波浪下的动态结构响应是基于水弹性方法,传统的水弹性方法并不能计算船体梁的动态非线性强度。该二维修正的水弹性方法考虑时域波浪和非线性船体梁之间的耦合,将水弹性方法和Smith方法结合,用Smith方法计算船体梁的刚度,而其刚度与船体梁的强度和变形曲率有关。所以该时域的非线性刚度被用于修改水弹性方法里的常数项的结构梁刚度。几组极端波模型被用以产生船体梁的大变形和非线性动态垂向弯矩。文中分别采用修正水弹性方法和普通水弹性方法,通过改变四个重要的极端波参数如极端波最大波高、规则波的波高、波速和波长等来研究其对船体梁船中处的大变形转角和非线性垂向弯矩的影响,通过采用修正的水弹性方法计算得来的结果与水弹性方法计算得来的结果相比较,得到了一些差异和结论。  相似文献   

10.
This paper is concerned with the hydroelastic responses and hydrodynamic interactions of two large floating fuel storage modules placed side-by-side with the presence of floating breakwaters. These modules and breakwaters form the floating fuel storage facility (FFSF). The floating storage modules and breakwaters are modeled as plates and the linear wave theory is used to model the water waves in the numerical model. The numerical model is verified with existing numerical results and validated with experimental test. Numerical simulations are performed to determine the hydroelastic behavior and hydrodynamic interactions of floating storage modules placed adjacent to each other and enclosed by floating breakwaters under various incident wave angles. The effects of breakwaters, drafts, channel spacing formed by the two adjacent modules and water depth on the hydroelastic responses of the modules are investigated. The wave induced responses of multiple floating storage modules enclosed by floating breakwaters are also examined.  相似文献   

11.
This paper reviews the importance of uncertainties in hull girder loads influenced by flexible fluid structure interactions. The focus is on developments in the field of hydroelastic modelling, simulation and model tests of practical relevance to the prediction hull girder wave load predictions and their validation. It is concluded that whereas hydroelastic methods for use in design development and assessment become increasingly useful, challenges in realizing and modelling uncertainties can be attributed to: (1) the limitations of numerical methods to suitably model nonlinearities; (2) the ambiguity of model tests; and (3) the systematic use of data emerging from computational, model- or full-scale methods. An approach is recommended to assess the uncertainty in the hydroelastic responses to wave loading and an example is provided to demonstrate the application of the procedure.  相似文献   

12.
This paper presents an effective scheme for computing the wave-induced hydroelastic response of a very large floating structure, and a validation of its usefulness. The calculation scheme developed is based on the pressure-distribution method of expressing the disturbance caused by a structure, and on the mode-expansion method for hydroelastic deflection with the superposition of orthogonal mode functions. The scheme uses bi-cubic B-spline functions to represent unknown pressures, and the Galerkin method to satisfy the body boundary conditions. Various numerical checks confirm that the computed results are extremely accurate, require relatively little computational time, and contain few unknowns, even in the region of very short wavelengths. Measurements of the vertical deflections in both head and oblique waves of relatively long wavelength are in good agreement with the computed results. Numerical examples using shorter wavelengths reveal that the hydroelastic deflection does not necessarily become negligible as the wavelength of incident waves decreases. The effects of finite water depth and incident wave angle are also discussed.  相似文献   

13.
超大型FPSO原油质量分布模拟与水弹性响应研究   总被引:1,自引:1,他引:0  
FPSO在近海油气田开发中得到了越来越广泛的应用.大多数在渤海海域服役的FPSO工作在浅水海域.主尺度大与水深吃水小,直接导致FPSO水动力特性与深水条件下船舶的水动力特性有较大区别,因此采用水弹性理论研究超大型FPSO在浅水中的运动与波浪诱导载荷响应具有重要意义.浅水超大型FPSO满载时原油重量将近占载重量的80%,因此如何正确模拟原油重量分布对干结构的固有频率、广义质量和振型的计算非常重要.本文建立了基于三维水弹性理论的数值模型,开发了有限水深复合格林函数的数值计算程序模块,对一艘300K DWT FPSO在特定水深海况下的运动与波浪载荷响应进行了研究;同时采用三种方法模拟了原油质量分布.计算结果表明,不同的原油质量分布模拟方法对水弹性计算分析影响很大.  相似文献   

14.
船体主尺度增大会导致严重的鞭振和弹振现象,这会增大船体结构的极限载荷和疲劳损伤.为了深入探究船体的振动响应,文中在拖曳水池对某万箱集装箱船分别进行了分段模型的自航和拖航试验.分析了不同海况下自航和拖航这两种试验方式对鞭振和弹振响应的影响.为计及不同振动频率成分对载荷响应的影响,提出一种考虑波浪记忆效应的非线性水弹性方法.文中提出了一种求解延时函数的方法,能够解决高频区域的阻尼系数的计算限制.最后,船舯弯矩试验结果分别和线性与非线性理论结果进行了比较,发现文中提出的非线性方法能够更好地预报弹性船体的振动响应.  相似文献   

15.
基于完全耦合算法对绕二维NACA0009水翼流固耦合特性进行了数值模拟研究。采用Theodorsen模型和Munch模型对刚性和弹性水翼的水弹性响应进行了数值计算,分析了流体与结构的相互作用关系,研究了影响结构水弹性响应和流固耦合特性的因素。研究结果表明:考虑了流体黏性的Munch模型与基于势流理论的Theodorsen模型对气动弹性响应的数值计算结果基本一致,而Theodorsen模型由于没有考虑流体黏性在一定程度上低估了结构的水弹性响应。结构的惯性、阻尼和刚度力矩与流体的相应附加载荷均处于同一数量级,故流体与结构的相互作用不可忽略,尤其对于弹性水翼,流体的惯性、附加阻尼作用增大,流固耦合算法的数值稳定性对流固耦合特性的计算结果影响将更大。外部激励频率为非共振频率时,结构的刚度作用是影响水弹性响应的主要因素,外部激励频率为共振频率时,流体的附加阻尼和附加刚度作用减弱,除结构的刚度作用外,流体与结构的惯性作用对水弹性响应和流固耦合特性的影响也较大。  相似文献   

16.
A hydroelastic analysis of a rectangular plate subjected to slamming loads is presented. An analytical model based on Wagner theory is used for calculations of transient slamming load on the ship plate. A thin isotropic plate theory is considered for determining the vibration of a rectangular plate excited by an external slamming force. The forced vibration of the plate is calculated by the modal expansion method. Analytical results of the transient response of a rectangular plate induced by slamming loads are compared with numerical calculations from finite element method. The theoretical slamming pressure based on Wagner model is applied on the finite element model of a plate. Good agreement is obtained between the analytical and numerical results for the structural deflection of a rectangular plate due to slamming pressure. The effects of plate dimension and wave profile on the structural vibration are discussed as well. The results show that a low impact velocity and a small wetted radial length of wave yield negligible effects of hydroelasticity.  相似文献   

17.
波浪作用下带式舟桥的水弹性响应研究   总被引:5,自引:0,他引:5  
对于设计和使用在波浪和流作用下作业的浮桥,充分了解其水弹性性能尤为重要.就在国防和桥梁工程中极为重要的带式舟桥而言,预报其在波浪中的水弹性响应在实际工程中就显得十分必要.该文主要研究带式舟桥在波浪作用下的水弹性性能.首先,简要地介绍了预报浮桥动力响应的不同方法及它们与试验比较的结果;其次,在三维水弹性理论的基础上采用模态叠加法对带式舟桥的有限元模型进行了水弹性分析,同时与十分之一模型试验结果做了比较(该试验由上海交通大学海洋工程国家重点实验室承担).研究表明,文中的方法计算分析波浪中浮桥的水弹性响应是可行的.  相似文献   

18.
文章采用基于任意拉格朗日—欧拉(ALE)算法的显式有限元技术研究水弹性砰击现象,针对已开展的铝制加筋板楔形体结构入水砰击模型实验,开展了数值模拟比较工作。该楔形体底部斜升角为20度,底部两侧是包含三根纵骨和两根横梁的加筋板结构,两侧结构刚度不同。预报了模型无转角和有转角典型工况的砰击入水过程,得到的入水加速度、底部加筋板结构纵骨应力和横梁响应与模型实验结果吻合较好。研究表明该ALE算法具备模拟船舶局部结构的水弹性砰击流固耦合问题的能力。  相似文献   

19.
Study on sloshing in cargo tanks including hydroelastic effects   总被引:3,自引:0,他引:3  
The sloshing problem in cargo tanks is studied through experiments and numerical analysis. The fluid motion is described using a higher-order boundary element method and the structural response by a thin plate theory. It was found that hydraulic jumps are formed when the excitation frequency is close to the resonance frequency in the case of low filling depth. In the case of high filling depth, the flow resonates and hits the top of the tank, thus inducing a large impact pressure. The pressure on the flexible plate shows amplified initial peaks followed by oscillatory components, the frequency of which coincides with the natural frequencies of the plate in water as a result of hydroelastic effects. Received for publication on Nov. 18, 1998; accepted on May 14, 1999  相似文献   

20.
[目的]为了兼顾船舶操纵运动预报的成本与精度,基于数值计算方法,结合水动力导数敏感度分析,提出一种船舶操纵运动预报方法.[方法]首先,求解RANS方程,应用流体体积(VOF)法捕捉自由液面,采用动态网格方法对DTMB 5415船型进行约束运动的数值计算,并将回归得到的线性水动力导数与试验值进行对比,验证数值方案的有效性...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号