首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
超大型海洋浮式结构物(VLFS)在利用海洋空间和开发海洋资源方面有着很大的实用价值.但如何精确有效地计算和预报其在波浪中的水弹性响应是设计过程中的一个非常重要的技术问题.目前,很多学者提出了不同的简化方法来预报VLFS的水弹性响应.文章全面地介绍了关于计算VLFS水弹性响应的解析方法和数值方法的研究现状,并将相应的数值结果与已有的试验数据相比较,进行了分析讨论.  相似文献   

2.
文章以三维水弹性力学理论为基础,提出了综合考虑波浪与设备机械激励下的船体结构振动分析方法,并对小水线面双体船的船体振动响应特性进行了分析,预报了该船体的固有频率特性,及在试验工况与航行时受发电机激励下的局部结构振动响应,并与实船测量结果进行了对比。结果表明,该方法对于船体总振动、及船体受机械激励作用下的强迫振动分析预报是有效的,可应用于工程设计。同时,利用水弹性方法对SWATH船在波浪中的辐射噪声与近场噪声进行了预报,数值预报结果与试验进行了对比,表明该方法在噪声分析中也是可行的。  相似文献   

3.
为准确预报聚焦波作用下弹性板的非线性动力响应,充分掌握极端波浪条件对超大型浮体动力响应的影响,选用一种基于离散模块-梁单元的水弹性分析方法,对弹性板在规则波和聚焦波作用下的不同响应特性进行研究。同时,开展水槽模拟试验,并将试验结果与理论结果进行对比,验证该水弹性分析方法的有效性。试验结果表明:基于离散模块-梁单元的水弹性分析方法在超大型浮体动力响应分析方面具有良好的准确性和简便性;在规则波作用下,随着规则波波陡和波长的增加,弹性板响应幅值增大;在聚焦波作用下,谱峰波长和最大波幅对弹性板响应的峰值和谷值有显著影响。  相似文献   

4.
传统的耐波性及波浪载荷理论与试验主要针对船舶在二维长峰波中的运动与载荷响应进行预报,然而实际海浪是三维短峰波。研究表明,基于长峰波的理论计算及水池模型试验所预报的船舶运动与载荷响应与实际情况存在一定的差异,且三维波浪的方向扩散特性是影响船舶运动与载荷响应的重要因素之一。为了研究短峰波中船舶运动与载荷响应特性及其与长峰波中响应的差异性,本文首先基于三维水弹性理论计算船舶在规则波中的频域响应,然后基于二维谱分析法将其扩展至短峰不规则波中船舶运动与载荷响应预报,进而分析短峰波方向扩散函数对于船舶运动与载荷响应的影响,最后基于实际海浪环境下大尺度模型水弹性试验数据验证理论计算结果。  相似文献   

5.
为了研究波流环境中浮桥通载时的动力特性,探讨通载速度及波流联合作用对浮桥动力响应的影响,本文采用势流理论对浮桥所处流场的速度势进行分析,采用莫力森公式计算浮桥受到的水阻力,同时考虑多轴移动荷载的影响,建立系泊浮桥的时域运动方程;并对不同工况下浮桥的运动响应及系泊力进行了计算,在计算中考虑了瞬时湿表面变化对浮桥浮力及水阻力的非线性影响,通过计算得到了不同行驶速度、不同波况下浮桥各桥节的运动响应及系泊力时程曲线.结果表明:车辆行驶速度对浮桥桥节垂荡、纵摇响应及系泊力均具有明显影响,桥节垂荡、纵摇及上游系泊缆张力峰值随行驶速度增大而增大;通载浮桥中部桥节的系泊缆张力最大值小于两侧桥节系泊力最大值;波浪作用下桥节的运动响应及系泊力与车辆荷载引起的运动响应及系泊力具有一定程度的叠加效应,特别是垂荡响应的叠加效应更为明显;当波高较大时系泊力将由波浪作用控制.  相似文献   

6.
极浅水单点系泊FPSO低频响应分析   总被引:3,自引:0,他引:3  
对单点系泊FPSO在极浅水中波浪作用下的低频响应进行频域数值计算与模型试验研究,水深16.7m,入射波有义波高4.1m.计算结果与试验结果符合良好.试验中的波浪校验结果显示,在不规则波浪谱中出现明显的低频成分.由此产生了一阶低频波浪力,其能量谱是通常二阶波浪力谱的近百倍,导致FPSO在极浅水中所受低频波浪力大大增加,并引起极大幅度的共振纵荡运动响应.极浅水时,低频纵荡运动响应主要是一阶的,二阶成分几乎可以忽略,而且与深水相比,由于阻尼和二阶波浪力同时增加,二阶响应变化不大.低频浅水长波和一阶低频波浪力及其诱导大幅运动响应会给极浅水FPSO和系泊系统设计带来严重影响,在水动力性能预报时必须仔细予以考虑.  相似文献   

7.
基于AQWA软件,对岛礁地形下带系泊系统的多浮箱浮式栈桥进行了运动响应的数值模拟,并与带岛礁地形模型试验的响应幅值算子(RAO)进行了对比分析,为浮式栈桥在实际海洋环境中的施工和运营安全等作准确预报.研究结果表明,基于AQWA软件,文中数值方法可有效模拟岛礁对多浮体的绕射和辐射等干扰;由于海底地形变化的影响,波浪将发生折射、绕射、反射等一系列的复杂变化,同时海底倾斜会对系泊缆绳张力造成影响,从而会影响浮桥的运动响应.数值模拟岛礁地形影响下多体浮桥的运动响应结果与水池试验得到的数值对比吻合良好.  相似文献   

8.
为准确计算滑行艇在波浪中的水动力性能,基于粘性理论,采用随体网格技术、耦合求解运动方程,完成了滑行艇在迎浪规则波中运动响应的数值预报.对滑行艇运动响应结果采用时域和频域方法分析,给出了入射波的周期与滑行艇固有频率对滑行艇运动响应的影响分析结果,对数值计算值与模型试验值进行比较.结果表明,数值计算方法可以准确且高效预报滑行艇在波浪中高速航行时的运动姿态及水动力特性,为滑行艇设计提供指导和参考依据.  相似文献   

9.
波浪条件是游艇码头浮桥结构设计的控制性因素.针对拉簧锚碇式混凝土浮桥结构在波浪作用下运动和受力情况复杂的问题,依托实际工程,归纳游艇码头浮箱和锚碇结构选型的一般思路和原则,找出拉簧锚碇式混凝土浮桥的适用情况和结构设计要点,并通过有限元分析拉簧锚碇式混凝土浮桥在波浪作用下的运动响应及结构应力特点.结果表明,波浪超过0.5...  相似文献   

10.
间隙对拼组式浮桥静态响应的影响分析   总被引:6,自引:0,他引:6  
为了减小浮桥在通载状态下的结构内力及浮桥拼组拆卸的方便,拼组式浮桥通常在设计的时候就在舟节之间留有一定的连接间隙.在以往的分析中大多忽略了这种间隙对浮桥变形和受力的影响,而简单地将浮桥简化为连续或者铰接梁体系进行数值或者解析求解,这种方法并不能准确地给出桥节之间连接间隙的存在及其大小对浮桥静态响应的影响.本文以拼组式浮桥的连接间隙为研究对象,建立全桥分析的三维有限元模型,并用非线性单元的组合对浮桥连接件的力学特性进行有限元模拟,通过计算与试验结果的比较,表明了本文方法的正确性;在此基础上本文研究了浮桥在静载荷作用下的位移响应及不同位置的连接件内力与连接件间隙之间的关系,为此类浮桥的设计提供了必要的参考,并为其后续的动力分析提供了必要的理论依据.  相似文献   

11.
In this paper, the prediction of the hydroelastic response of the floating bridge and the fatigue behavior of the connectors is presented. And based on the hydroelastic response analysis of the ribbon bridge, the dynamic alternating load of the connector can be obtained, in that the fatigue behavior analysis of the connector simulated by the solid elements can be conducted by employing the local stress–strain approach. It is revealed that the sequence of the dynamic loads acting on the connectors, the value of various fatigue parameters and the ultimate tensile strength should be sufficiently considered, especially the passing speed of a moving load, so that it can significantly reduce the fatigue damage of the connectors.  相似文献   

12.
This paper is concerned with the hydroelastic responses and hydrodynamic interactions of two large floating fuel storage modules placed side-by-side with the presence of floating breakwaters. These modules and breakwaters form the floating fuel storage facility (FFSF). The floating storage modules and breakwaters are modeled as plates and the linear wave theory is used to model the water waves in the numerical model. The numerical model is verified with existing numerical results and validated with experimental test. Numerical simulations are performed to determine the hydroelastic behavior and hydrodynamic interactions of floating storage modules placed adjacent to each other and enclosed by floating breakwaters under various incident wave angles. The effects of breakwaters, drafts, channel spacing formed by the two adjacent modules and water depth on the hydroelastic responses of the modules are investigated. The wave induced responses of multiple floating storage modules enclosed by floating breakwaters are also examined.  相似文献   

13.
In this paper, we present a numerical study on the hydroelastic response of a 4.6 km long fjord crossing floating bridge subjected to wave loads. The bridge is straight in design and supported by 35 pontoons along its full length. To limit the response to horizontal loads, four clusters of deep water mooring lines are engaged to increase the transverse stiffness of the bridge. Owing to the very large span across the fjord, inhomogeneity in the wave field exists. This study examines the various effects of inhomogeneous wave loads on the dynamic responses of the floating bridge. These include the spatial variations of the wave direction, significant wave height and peak period as well as the coherence and correlation of waves along the entire length of the floating bridge. For the purpose of comparison, the dynamic bridge responses under homogeneous wave load cases are also studied. In addition, the effects of wave load components and short-crestedness are presented and discussed.  相似文献   

14.
This paper deals with the dynamic response and strength of very large floating structures (VLFS) in regular and irregular waves, considering the propagation of the hydroelastic deflection wave of the structure. First, a simplified estimation method is presented for the dynamic response and strength of the structure in regular waves. Then, the validity of the method is demonstrated by comparing its results with analytical results and experimental results for a mat-type floating structure model. Next, a simplified estimation method for dynamic responses under long crested irregular wave conditions is presented by using the above results and by combining them with irregular sea wave spectra. Finally, the applicability of the method is investigated through numerical examples carried out for a 4,800-m class VLFS under trial design. Characteristics of the hydroelastic waves, short-term responses, and reliability levels are numerically identified. Received for publication on April 14, 1999; accepted on Sept. 10, 1999  相似文献   

15.
《Marine Structures》2000,13(4-5):279-299
Real sea areas where very large floating structures are installed are random wave fields. Then, it is necessary to analyze the responses in the time domain due to directional waves. There exist hydroelastic deflections and slow drift motions in the responses of VLFSs in ocean waves. However, it is very time consuming to solve the equations of motion in the time domain and obtain these responses due to directional waves. It is unnecessary to solve such equations in the time domain, if mooring forces can be turned into on equivalent linear system. In this paper, we analyze the time-series responses without solving the equations of motion in the time domain. And, the corresponding model tests in uni- and two-directional irregular waves are carried out. The present method is validated by comparisons between the analytical and measured results of time histories, and moreover, the analytical method of a slowly varying wave drift force is also validated.  相似文献   

16.
This paper deals with the dispersion relation of hydroelastic waves in pontoon-type very large floating structures (VLFS) using a simple beam modeling, where the term hydroelastic waves means propagation of deflection vibrations in VLFS. The purpose of this paper is to show the properties of the hydroelastic waves. The dispersion relation of hydroelastic waves propagating in an infinite plate floating on the water is derived based on the linear water wave theory. The effects of the water depth and of the bending rigidity of the floating plate on the wavelength, phase velocity, and group velocity of the hydroelastic waves are shown theoretically or numerically. Then, the dispersion relation of hydroelastic waves in a finite plate floating on shallow water is investigated. It is shown that the wavelength or the phase velocity of the hydroelastic waves varies with the location in the plate. Received for publication on April 7, 1999; accepted on Aug. 20, 1999  相似文献   

17.
On the hydroelastic responses of a very large floating structure in waves   总被引:1,自引:0,他引:1  
New numerical methods are presented for hydroelastic analyses of a very large floating structure (VLFS) of several kilometers length and width. Several methods are presented that accelerate computation without an appreciable loss of accuracy. The accuracy and efficiency of the proposed methods are validated through comparisons with other numerical results as well as with existing experimental results. After confirming the effectiveness of the methods presented, various characteristics of the hydroelastic behavior of VLFSs are examined, using the proposed methods as numerical tools. Received for publication on Dec. 3, 1999; accepted on Dec. 15, 1999  相似文献   

18.
《Marine Structures》2004,17(6):435-454
The hydroelasticity of a very large floating plate with large deflections in multidirectional irregular waves is discussed. After a brief introduction on wave loads on a flexible structure, the paper derives the generalised fluid force acting on a floating structure in multidirectional irregular waves. The nonlinear sectional forces induced by the membrane forces in the plate are deduced. The hydroelastic response equations of a floating plate with large deflections in multidirectional irregular waves are established, and a solution method in the frequency domain is discussed including extreme value statistics. A very large floating structure is chosen as an example. The numerical results show that the influence of the membrane forces on the vertical displacements and the bending moments is noticeable but not that large.  相似文献   

19.
A floating bridge and a floating platform can serve as a transport channel between land and sea. They will interact with each other in the wave environment. In this paper, the dynamic response characteristics of a floating bridge under irregular waves and regular waves are studied by means of model tests and numerical calculations. The results of model test and numerical calculation based on potential flow theory are basically consistent and can be mutually verified. By comparing and analyzing the dynamic response results of the floating bridge under the condition of “with floating platform” and “without floating platform”, some conclusions are drawn. The floating platform will have a shielding effect on waves coming from the sea. Due to the shielding effect of the floating platform, the motions in heave, surge and pitch of the floating bridge are evidently diminished. Among them, the motion response of the pontoon near the floating platform decreases most obviously. The floating platform provides a relatively stable marine environment for the floating bridge, thereby improving the survival state of the floating bridge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号