首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In designing the support structures of floating wind turbines (FWTs), a key challenge is to determine the load effects (at the cross-sectional load and stress level). This is because FWTs are subjected to complex global, local, static, and dynamic loads in stochastic environmental conditions. Up to now, most of the studies of FWTs have focused on the dynamic motion characteristics of FWTs, while minimal research has touched upon the internal load effects of the support structure. However, a good understanding of the structural load effects is essential since it is the basis for achieving a good design. Motivated by the situation, this study deals with the global load effect analysis for FWT support structures. A semi-submersible hull of a 10-MW FWT is used in the case study. A novel analysis method is employed to obtain the time-domain internal load effects of the floater, which account for the static and dynamic global loads under the still water, wind, and wave loads and associated motions. The investigation of the internal stresses resulting from various global loads under operational and parked conditions and the dynamic behavior of the structural load effects in various environmental conditions are made. The dominating load components for structural responses of the semi-submersible floater and the significant dynamic characteristics under different wind and wave conditions are identified. The dynamic load effects of the floating support structure are investigated by considering the influence of the second-order wave loads, viscous drag loads induced global motions, and wind and wave misalignments. The main results are discussed, and the main findings are summarized. The insights gained provide a basis for improving the design and analysis of FWT support structures.  相似文献   

2.
To simulate the dynamic responses of the multibody system with a floating base when the upper parts spread with a certain sequence and relative speed, the homogeneous matrix method is employed to model and simulate a four-body system with a floating base and the motions are analyzed when the upper parts are spread sequentially or synchronously. The rolling, swaying and heaving temporal variations are obtained when the multibody system is under the conditions of the static water along with the wave loads and the mean wind loads or the single pulse wind loads, respectively. The moment variations of each joint under the single pulse wind load are also gained. The numerical results showed that the swaying of the floating base is almost not influenced by the spreading time or form when the upper parts spread sequentially or synchronously, while the rolling and the heaving mainly depend on the spreading time and forms. The swaying and heaving motions are influenced significantly by the mean wind loads. The single pulse wind load also has influences on the dynamic responses. The torque of joint 3 and joint 4 in the single pulse wind environment may be twice that in the windless environment when the system spreads with 60 s duration.  相似文献   

3.
To simulate the dynamic responses of the multibody system with a floating base when the upper parts spread with a certain sequence and relative speed, the homogeneous matrix method is employed to model and simulate a four-body system with a floating base and the motions are analyzed when the upper parts are spread sequentially or synchronously. The rolling, swaying and heaving temporal variations are obtained when the multibody system is under the conditions of the static water along with the wave loads and the mean wind loads or the single pulse wind loads, respectively. The moment variations of each joint under the single pulse wind load are also gained. The numerical results showed that the swaying of the floating base is almost not influenced by the spreading time or form when the upper parts spread sequentially or synchronously, while the rolling and the heaving mainly depend on the spreading time and forms. The swaying and heaving motions are influenced significantly by the mean wind loads. The single pulse wind load also has influences on the dynamic responses. The torque of joint 3 and joint 4 in the single pulse wind environment may be twice that in the windless environment when the system spreads with 60 s duration.  相似文献   

4.
陈徐均  江召兵  吴广怀  沈庆 《船舶力学》2010,14(11):1290-1296
在快速重载作用下,柔性长浮桥可能会出现位移波堆积效应.为验证预测的正确性,对两种长浮桥模型(连续浮桥和分置式浮桥)进行了试验,在不同荷载重量下和不同速度作用下的位移响应利用六自由度运动测定仪进行了测量.试验结果表明:荷载重量越大、荷载速度越快,位移波的堆积效应越明显;荷载的速度对兴波的形状和波幅都有着直接的影响.位移波的堆积影响了荷载的运行速度,在快速重载的浮桥工程中,必须考虑位移波的堆积对运动荷载的影响.  相似文献   

5.
《Marine Structures》2000,13(4-5):437-458
The world’s first swing and floating bridge is under construction in the Port of Osaka. It will be completed in the year 2000 to connect two reclaimed islands. The bridge rests on two hollow steel pontoons and is supported horizontally by rubber fenders and dolphins. Many important engineering issues such as the dynamic response to the wave, wind, earthquake and vehicle loads are investigated herein. The bridge can be regarded as a high-tech bridge on the advanced technology opening vistas onto 21st century.  相似文献   

6.
Common effect of wave and slip of internal heavy load will make rolling of the roll-on ship serious. This is one of the important reasons for overturn of ro-ro ships. The multibodies System with a floating base is composed of ro-ro ship and slipping heavy load. This paper takes the rolling angle of the ship and the transverse displacement of the heavy load on desk as two freedoms. Making use of analysis of apparent gravitation and apparent buoyaney, the wave rolling moment is derived. By use of dynamic method of multibodies system with a floating base, dynamic equations of the system are established. Taking a certain channel ferry as an example, a set of numerical calculation have been carried out for rolling response of the ship and displacement response of the slipping heavy load under common effect of synchro-slipping heavy loads and wave.  相似文献   

7.
《Marine Structures》2005,18(1):85-107
In this paper, the motion equations for the nonlinearly connected floating bridge, considering the nonlinear properties of connectors and vehicles’ inertia effects, are proposed. The super-element method is used to condense the whole calculation scale, and the direct integration and Newton–Raphson iteration method are applied to solve the reduced equations. Based on the modal and static analyses, the dynamic displacement and connection forces characteristics of a floating bridge with nonlinear connectors subjected to moving loads are investigated. It is found that nonlinearity and initial gap of the connectors are important for the hydroelastic response of a nonlinearly connected floating bridge.  相似文献   

8.
A floating bridge and a floating platform can serve as a transport channel between land and sea. They will interact with each other in the wave environment. In this paper, the dynamic response characteristics of a floating bridge under irregular waves and regular waves are studied by means of model tests and numerical calculations. The results of model test and numerical calculation based on potential flow theory are basically consistent and can be mutually verified. By comparing and analyzing the dynamic response results of the floating bridge under the condition of “with floating platform” and “without floating platform”, some conclusions are drawn. The floating platform will have a shielding effect on waves coming from the sea. Due to the shielding effect of the floating platform, the motions in heave, surge and pitch of the floating bridge are evidently diminished. Among them, the motion response of the pontoon near the floating platform decreases most obviously. The floating platform provides a relatively stable marine environment for the floating bridge, thereby improving the survival state of the floating bridge.  相似文献   

9.
In this paper, the prediction of the hydroelastic response of the floating bridge and the fatigue behavior of the connectors is presented. And based on the hydroelastic response analysis of the ribbon bridge, the dynamic alternating load of the connector can be obtained, in that the fatigue behavior analysis of the connector simulated by the solid elements can be conducted by employing the local stress–strain approach. It is revealed that the sequence of the dynamic loads acting on the connectors, the value of various fatigue parameters and the ultimate tensile strength should be sufficiently considered, especially the passing speed of a moving load, so that it can significantly reduce the fatigue damage of the connectors.  相似文献   

10.
A mathematical model of a ribbon pontoon bridge subjected to moving loads was formulated using the theory of simply supported beams. Two types of moving load models were used, the first a moving-constant-force model and the second a moving-mass model. Using both types of loads, the dynamic behavior of a ribbon pontoon bridge was simulated while subjected to a single moving load and then multiple moving loads. Modeling was done with the Simulink package in MATLAB software. Results indicated that the model is correct. The two types of moving load models made little difference to the response ranges when loads moved on the bridge, but made some difference to the response phases. When loads left, the amplitude of the dynamic responses induced by the moving-constant-force model load were larger than those induced by the moving-mass model. There was a great deal more difference when there were more loads.  相似文献   

11.
以7模块MOB为研究对象,利用RMFC模型,基于势流理论对7个构成模块单元进行3D水动力性能分析,计算过程中考虑了由于遮蔽效应而导致的浮体间相互作用.编制基于频域的多浮体运动和柔性连接器载荷计算程序,计算在规则波和不规则波下的连接器载荷值,并比较不同连接器刚度下各柔性连接器载荷值.计算结果表明,波浪入射角、波频、连接器刚度和海况对连接器载荷响应具有显著影响.本文的计算结果可为MOB柔性连接器设计与模块耐波性设计提供参考.  相似文献   

12.
Semi-submersible platform has been widely used in offshore oil exploitation due to its excellent performance, but can be attacked by wave impact loads in extreme ocean environments. Determining wave impact loads accurately is of great significance to the design and operation of offshore structures. An experimental study was carried out to investigate the critical governing parameters for the horizontal wave impact loads on a semi-submersible. The wavelet denoising technique and the frequency response function method are employed successfully to remove the effect of noise and dynamic contamination from the experimental data. The strongly nonlinear characteristics of the wave impact load are demonstrated. The results show that wave impact events are governed by the upwell height and upwell velocity. Most major wave impact events occur where both the two parameters are large, and the upwell velocity is more dominant in the wave impact process. In general, larger parameters tend to result in larger peak pressures and higher probabilities of wave impacts. The motion behaviors of the platform are benefit to reduce the occurrence probabilities of wave impact events and maximum impact pressures, owing to the escape velocities following the wave direction and the rotations leading to the above-water structure away from the waves. The insights given in this study provide a motivation and foundation for developing a sophisticated prediction model of the wave impact load on floating platforms.  相似文献   

13.
文章采用了空气动力、水动力、控制与弹性完全耦合的时域模拟方法研究了张力腿式浮式风机平台的动力响应.水动力载荷的计算采用了三维势流理论与Morison公式.空气动力载荷的计算采用了叶素动量理论和广义动态尾流理论.利用FAST软件得到了张力腿式浮式风机平台响应的时域结果,并分析了其动力响应特性.建立了描述平台纵荡运动的非线性微分方程,并采用了摄动方法求得其近似解,解释了纵荡运动中由非线性粘性效应引起的高频响应.对数值模拟结果的分析表明高频的响应分量对平台的动力性能有显著的影响.  相似文献   

14.
滚装船中车辆等重载荷由于固定装置失效而随船摇荡作自由滑动时,往往由于反复碰撞致使在甲板上作自由滑动的重载荷随着时间增多.由于波浪和内部滑动车辆共同作用,使滚装船的横摇加剧.这是许多滚装船发生倾覆的重要原因之一.本文对由滚装船和两辆滑动车辆组成的浮基多体系统,取滚装船的横摇角和两辆自由滑动车辆在甲板上的横向位移为此系统的三个自由度,运用多体系统动力学方法,建立了系统的动力学方程.以某型海峡滚装渡轮为例,对在两辆车自由滑动和波浪共同作用下的滚装船浮基多体系统的横摇响应和车辆位移响应进行了数值计算,得出了多个自由滑动的重载荷因相互碰撞在舷侧舱壁的约束下随着时间的延长其运动将趋于同步的结论.  相似文献   

15.
丁振东  吴天行  严兵  李义明 《武汉造船》2010,(3):133-136,141
应用有限元软件ANSYS建立500t浮吊三维计算模型,以规则海浪载荷作用下船舶摇荡运动加速度作为基础激励,采用谐响应分析方法计算起吊7500t载荷时浮吊在海浪作用下的动力响应。计算结果表明,海浪方向为90°时浮吊动力响应比较大;吊重起升至比较高位置时,浮吊动力响应比较大;因船舶横摇大于纵摇,故浮吊的横向位移大于纵向和垂向位移,钢丝绳吊重横向摆角大于纵向摆角;臂架的最大动应力出现在根部主弦杆处,海浪载荷引起的浮吊结构动应力小于材料屈服强度。  相似文献   

16.
When a ship navigates at sea, the slamming impact can generate significant load pulses which move up along the hull plating. The effect of the moving pressure has so far not been explicitly considered in the Rules and Regulations for the Classification of Ships. Based on a modal superposition method and the Lagrange equation, this paper derives analytical solutions to study the elastic dynamic responses of fully clamped rectangular plates under moving pressure impact loads. The spatial variation of the moving slamming impact pressure is simplified to three types of impact loads, i.e. a rectangular pulse, a linearly decaying pulse and an exponentially decaying pulse. The dynamic responses of fully clamped rectangular plates under the moving slamming impact pressure are calculated in order to investigate the influence of the load pulse shapes and moving speed on the plate structural behaviour. It is found that the structural response of the plate increases with the increase of the moving speed. The response of the plate subjected to a moving pressure impact load is smaller than the case when the plate is subjected to a spatially uniform distributed impact load with the same load amplitude and load duration. In order to quantify the effect of the moving speed on the dynamic load, a Dynamic Moving Load Coefficient (DMLC) is introduced as the ratio between the dynamic load factor for the moving impact load and that under the spatially uniform distributed impact load. An expression for DMLC is proposed based on analyses of various scenarios using the developed analytical model. Finally an empirical formula which transforms the moving impact loads to an equivalent static load is proposed.  相似文献   

17.
Several floating wind turbine designs whose hull designs reflect those used in offshore petroleum industry have emerged as leading candidates for the future development of offshore wind farms. This article presents the research findings from a model basin test program that investigated the dynamic response of a 1:50 scale model OC3 spar floating wind turbine concept designed for a water depth of 200 m. In this study the rotor was allowed to rotate freely with the wind speed and this approach eliminated some of the undesirable effects of controlling wind turbine rotational speed that were observed in earlier studies. The quality of the wind field developed by an array of fans was investigated as to its uniformity and turbulence intensity. Additional calibration tests were performed to characterize various components that included establishing the baseline wind turbine tower frequencies, stiffness of the delta type mooring system and free decay response behaviour. The assembled system was then studied under a sequence of wind and irregular wave scenarios to reveal the nature of the coupled response behaviour. The wind loads were found to have an obvious influence on the surge, heave and pitch behaviour of the spar wind turbine system. It was observed from the experimental measurements that bending moment at the top of the support tower is dominated by the 1P oscillation component and somewhat influenced by the incoming wave. Further it was determined that the axial rotor thrust and tower-top shear force have similar dynamic characteristics both dominated by tower’s first mode of vibration under wind-only condition while dominated by the incident wave field when experiencing wind-wave loading. The tensions measured in the mooring lines resulting from either wave or wind-wave excitations were influenced by the surge/pitch and heave couplings and the wind loads were found to have a clear influence on the dynamic responses of the mooring system.  相似文献   

18.
陈前  付世晓  邹早建 《船舶力学》2012,16(4):408-415
支撑结构设计是大型海上风电机组设计的重要部分。文章分析了海上风电机组的各种环境载荷,并以3MW风力机组为例计算其所受环境载荷,包括作用在支撑结构顶端的由风机叶轮转动引起的水平轴向力、作用在塔筒上的风载荷以及作用在基础上的海流、海浪载荷,并采用非线性弹簧来模拟基础与海底土层之间的相互作用。在考虑风轮影响情况下,利用有限元法对支撑结构进行了模态分析。最后,分析了环境载荷作用下支撑结构的动态响应。计算结果表明,在对海上风力发电机组进行动态响应计算时,环境载荷之间的相互耦合作用不能忽略。  相似文献   

19.
畅元江  陈国明 《船舶力学》2010,14(6):596-605
随着钻井作业向深水(500~1 500m)和超深水(1 500m以上)发展,在交变海洋环境载荷波浪力、海流力和浮式钻井平台运动的共同作用下,隔水管的动态响应更加显著.文中探讨了隔水管侧向振动的数学模型、动态特性分析中的结构与环境载荷建模技术及其非线性动力分析方法,研究并对比了不同分析方法在计算效率、计算精度和工程适用性等方面的差异.介绍了时域内应用ABAQUS软件进行超深水钻井隔水管非确定性动力分析的算法与详细流程,算例比较了不同边界条件对深水钻井隔水管动态特性的影响.研究表明,时域非确定性分析最为精确但需要时间最长,且只能采用线性AIRY波浪理论;理论上,海流主要引起隔水管动态响应的时不变部分,但该时不变部分不等同于海流引起的隔水管静态响应,一种简化方法只将海浪与钻井船运动作为动载荷而不考虑海流对动态响应的贡献;钻井船运动和波浪载荷是隔水管动态响应分析主要的动载荷,对于超深水隔水管来说,钻井船运动是首要的动载荷,其慢漂运动对隔水管性能有重要影响,而波浪仅对隔水管局部产生作用.  相似文献   

20.
The exploration for renewable and clean energies has become crucial due to environmental issues such as global warming and the energy crisis. In recent years,floating offshore wind turbines(FOWTs) have attracted a considerable amount of attention as a means to exploit steady and strong wind sources available in deep-sea areas. In this study, the coupled aero-hydrodynamic characteristics of a spar-type 5-MW wind turbine are analyzed. An unsteady actuator line model(UALM) coupled with a twophase computational fluid dynamics solver naoe-FOAM-SJTU is applied to solve three-dimensional Reynolds-averaged NavierStokes equations. Simulations with different complexities are performed. First, the wind turbine is parked. Second, the impact of the wind turbine is simplified into equivalent forces and moments. Third, fully coupled dynamic analysis with wind and wave excitation is conducted by utilizing the UALM. From the simulation, aerodynamic forces, including the unsteady aerodynamic power and thrust, can be obtained, and hydrodynamic responses such as the six-degrees-of-freedom motions of the floating platform and the mooring tensions are also available. The coupled responses of the FOWT for cases of different complexities are analyzed based on the simulation results. Findings indicate that the coupling effects between the aerodynamics of the wind turbine and the hydrodynamics of the floating platform are obvious. The aerodynamic loads have a significant effect on the dynamic responses of the floating platform, and the aerodynamic performance of the wind turbine has highly unsteady characteristics due to the motions of the floating platform. A spar-type FOWT consisting of NREL-5-MW baseline wind turbine and OC3-Hywind platform system is investigated. The aerodynamic forces can be obtained by the UALM. The 6 DoF motions and mooring tensions are predicted by the naoe-FOAM-SJTU. To research the coupling effects between the aerodynamics of the wind turbine and the hydrodynamics of the floating platform, simulations with different complexities are performed. Fully coupled aero-hydrodynamic characteristics of FOWTs, including aerodynamic loads, wake vortex, motion responses, and mooring tensions, are compared and analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号