首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于统计能量分析方法,探究了损耗因子对舱室噪声的影响,并基于实船损耗因子开展了船舶舱室噪声研究。基于统计能量分析方法,建立多舱段典型船舶结构模型,分别施加不同类型的激励载荷,计算并分析了损耗因子对舱室噪声仿真计算结果的影响;针对某船舶进行舱室噪声预报分析,并与实船舱室噪声测试结果比对,验证了舱室噪声预报方法的准确性。在此基础上,通过舱室噪声分布和舱室噪声主导分量分析,探究了船舱室噪声的分布规律,给出船舶噪声控制措施。研究表明,损耗因子对噪声预报结果影响较大,实船测试损耗因子对舱室噪声预报具有重要影响;不同类型设备对舱室噪声影响差异较大,需根据实际情况采用不同的噪声防护措施。  相似文献   

2.
基于统计能量法建立海洋平台舱室噪声预报模型,并将实验测试获取的内损耗因子作为参数输入,探索了海洋平台舱室的噪声特性规律,对超标舱室进行主导传递途径和主导分量分析,给出舱室噪声超标的原因,并提出声学优化措施。研究表明,除广播室及医务室外,其他平台舱室噪声均满足限值要求,且广播室及医务室噪声超标主要由局部噪声源引起,敷设高隔音复合岩棉板可有效降低舱室噪声,使平台舱室噪声满足限值要求。  相似文献   

3.
豪华客滚船对于整体性能和舒适性要求较高,但由于船体结构复杂、舱室数量众多、多重噪声激励下,存在噪声预报准确性不足,降噪设计难度大的问题。本文提出一种基于统计能量法(SEA)、有限元-统计能量法(FE-SEA),有限元法(EFEA)的豪华客滚船全频段噪声预报方法,并结合贡献量分析开展舱室降噪设计。首先,基于统计能量法建立高频声振耦合模型,计算各板子系统模态密度,进行频段划分,进而建立有限元-统计能量分析模型和有限元模型;其次,通过设置损耗因子、耦合损耗因子,确定螺旋桨振动噪声,主机和电机辐射噪声、振动噪声及空调通风噪声等主要噪声源,进行全频段声学分析。最后,根据《船上噪声等级规则》MSC.337(91)噪声标准规范,提出相应降噪方案,并进行贡献量分析。结果表明,该研究成功对船舶舱室进行全频段声学预测,经降噪处理后,舱室噪声值满足规范值要求。  相似文献   

4.
基于VA one软件平台对某散货船尾部试验模型进行噪声预报及控制效果分析。分析中采用的是统计能量分析法(SEA),在验证计算方法正确的基础上,首先采用新规范标准对10个主要舱室的噪声水平进行预报研究和比对,分析其中舱室噪声超标的可能原因。然后对该分析模型进行不同控制技术的研究分析——吸声技术、隔声技术和阻尼减振技术,并比较在不同位置敷设阻尼材料的降噪程度。研究表明:采用吸声、隔声和阻尼减振技术对降低船舶舱室噪声有显著效果,在激励源舱室敷设阻尼材料,仅对非激励源舱室降噪效果明显,且约束阻尼要比自由阻尼结构对噪声控制效果更有优势。研究结论可以作为船舶舱室噪声实际控制的参考。  相似文献   

5.
基于VA one软件平台对某散货船尾部试验模型进行噪声预报及控制效果分析.分析中采用的是统计能量分析法(SEA),在验证计算方法正确的基础上,首先采用新规范标准对10个主要舱室的噪声水平进行预报研究和比对,分析其中舱室噪声超标的可能原因.然后对该分析模型进行不同控制技术的研究分析——吸声技术、隔声技术和阻尼减振技术,并比较在不同位置敷设阻尼材料的降噪程度.研究表明:采用吸声、隔声和阻尼减振技术对降低船舶舱室噪声有显著效果,在激励源舱室敷设阻尼材料,仅对非激励源舱室降噪效果明显,且约束阻尼要比自由阻尼结构对噪声控制效果更有优势.研究结论可以作为船舶舱室噪声实际控制的参考.  相似文献   

6.
[目的]统计能量法(SEA)是解决结构高频振动与声辐射问题的有效方法,但是该方法通常假定流体为"轻质流体",在分析水中结构时其计算结果可能不准确。[方方法]分别运用SEA方法和有限元耦合边界元法(FEM/BEM)计算水下圆柱壳模型的辐射声压级,以验证SEA预报水下圆柱壳辐射噪声的准确性。运用SEA计算不同的子系统划分方式和不同的内损耗因子误差时圆柱壳的辐射声压级,分析影响SEA计算结果准确性的因素。[结结果]在400 Hz以下时SEA和FEM/BEM的计算结果相差很大,在400 Hz以上基本一致;不同子系统的划分方式造成的误差在5 dB左右;内损耗因子误差100%时造成的误差在2~3 dB。[结论]通过研究发现,在模态密度足够时可以使用SEA计算水下圆柱壳的辐射噪声,对于低频沿周向划分子系统不可靠,可能导致计算结果不准确;对于高频沿周向划分子系统比沿轴向划分子系统得出的计算结果更准确;对于能量高的子系统其内损耗因子误差对仿真结果影响更大,应采取更精确的方式确定其内损耗因子。研究结果对于运用SEA研究水下结构振动与噪声问题有一定参考价值。  相似文献   

7.
[目的]统计能量法(SEA)是解决结构高频振动与声辐射问题的有效方法,但是该方法通常假定流体为"轻质流体",在分析水中结构时其计算结果可能不准确。[方方法]分别运用SEA方法和有限元耦合边界元法(FEM/BEM)计算水下圆柱壳模型的辐射声压级,以验证SEA预报水下圆柱壳辐射噪声的准确性。运用SEA计算不同的子系统划分方式和不同的内损耗因子误差时圆柱壳的辐射声压级,分析影响SEA计算结果准确性的因素。[结结果]在400 Hz以下时SEA和FEM/BEM的计算结果相差很大,在400 Hz以上基本一致;不同子系统的划分方式造成的误差在5 dB左右;内损耗因子误差100%时造成的误差在2~3 dB。[结论]通过研究发现,在模态密度足够时可以使用SEA计算水下圆柱壳的辐射噪声,对于低频沿周向划分子系统不可靠,可能导致计算结果不准确;对于高频沿周向划分子系统比沿轴向划分子系统得出的计算结果更准确;对于能量高的子系统其内损耗因子误差对仿真结果影响更大,应采取更精确的方式确定其内损耗因子。研究结果对于运用SEA研究水下结构振动与噪声问题有一定参考价值。  相似文献   

8.
分析了某全回转拖轮的主要振动噪声源,采用有限元法建立了船体结构的超单元模型,计算了船体结构的振动响应。采用统计能量法建立了舱室噪声预报模型,计算了各舱室的噪声分布,通过相同船型的实验测量验证了仿真模型。舱室振动噪声预报结果表明,设计的主机隔振方案可达到4~5 dB的减振和4~10 dB的降噪效果,设计的舱室吸声降噪方案可达到5~7 dB的降噪效果,主机隔振和舱室吸声降噪综合方案可达到近10 dB的降噪效果,显著改善了舱室振动噪声水平。  相似文献   

9.
舱室噪声预报和控制对于提高船舶安全性和船员舒适性具有重要意义。本文基于统计能量法,根据CCS相关要求,采用VAONE软件对某新型海洋平台进行舱室噪声预报及控制研究,分别对4种不同内损耗因子进行讨论,通过分析超标舱室的噪声来源,采取有效的控制手段,为此平台的降噪设计提供参考依据,具有工程实用价值。  相似文献   

10.
肖蕾  李小灵  陈浩 《上海造船》2016,(4):46-53,65
自2014年7月1日起,欧盟及国际海事组织(International Maritime Organization,IMO)提出的新噪声标准正式生效,新噪声标准对船舶设计、建造带来了许多限制。针对新标准,江南造船(集团)有限责任公司对基于统计能量分析(Statistical Energy Analysis,SEA)方法预报噪声的基本理论及预报流程进行研究。噪声预报基本原理部分,主要介绍子系统间纯功率流平衡方程及系统的动力响应;预报流程部分,以某型在建船舶为研究对象,建立舱室声学模型,收集整理噪声源数据,计算分析各舱室的噪声水平,结合新标准对结果进行评价,确定需要采取防噪措施的舱室,分析噪声超标原因并提出解决方案,以确保船舶满足舱室噪声新标准的要求,提高船舶未来的竞争力。  相似文献   

11.
基于统计能量法,建立声呐平台统计能量计算分析模型,讨论某舰船机械载荷与水动力载荷对于声呐平台自噪声特性的影响,得到主要噪声激励源及其分布,对声呐平台讨论采用三种不同形式的降噪措施,结果分析表明:机械载荷激励的位置不同,对声呐平台自噪声贡献量不同,离声呐换能舱室越近的机械载荷激励对声呐平台自噪声的贡献量越大;对比得到在声呐换能舱室加吸声尖劈并适当将材料损耗因子增大到0.002为声呐平台自噪声的最优降噪措施,在主传导路径上采取控制措施从而增大损耗因子得到的降噪效果最优。  相似文献   

12.
基于统计能量方法研究主机排放噪声对船舶舱室噪声的影响规律。建立某船舱室噪声预报模型,分析是否考虑主机排放噪声时舱室噪声水平,探究是否需要考虑主机排放噪声对舱室噪声影响。研究表明,考虑主机排放噪声的舱室噪声计算结果更接近测试值,且主机排放噪声是距主机舱较近舱室噪声的重要成分,对于居住室、医护室等对噪声要求较高的舱室应考虑主机排放噪声的影响。  相似文献   

13.
利用声仿真软件VA ONE中的统计能量分析(Statistical Energy Analysis,SEA)模块对某沿海高速客船进行全船声振预报及隔振降噪分析。通过声仿真软件建立全船声仿真模型,对主机激励和螺旋桨激励下的船舶做初期声振预报,各主要舱室噪声均不符合规范要求。分析不符要求的舱室噪声产生原因,并且利用软件中的噪声控制模块对相应舱室布置隔声材料,隔声效果明显。软件分析结果可作为研究统计能量分析工程人员的参考。  相似文献   

14.
基于统计能量分析(SEA)方法,采用VA One软件建立钻井辅助驳船的声学模型,对该驳船舱室进行噪声预报,能量传递路径分析表明,非激励源舱室主要受结构噪声影响。选取机舱和某居住舱为对象,分别针对结构和空气噪声采取相应的降噪措施,对某居住舱阻尼减振措施进行优化分析,结果显示,降噪效果并非随阻尼层厚度的增加而线性增加,而是存在一最优值。研究验证了统计能量分析方法在船舶设计阶段对噪声预报和控制的适用性。  相似文献   

15.
针对圆柱形空腔吸声覆盖层低频吸声性能比较差,建立多层材料圆柱形空腔结构覆盖层的COMSOL有限元模型,通过采用波导有限元-传递矩阵法对有限元模型的验证并对其进行吸声特性数值仿真分析。结果表明:理论计算与数值仿真的曲线趋势大致吻合则该有限元模型有效;多层材料吸声覆盖层低频吸声特性明显优于单层材料吸声覆盖层,并且采用不同穿孔率、损耗因子、杨氏模量等参数的变化分析了各种参数的变化对吸声系数曲线的影响,为下一步的声学优化提供了具体指导。  相似文献   

16.
针对圆柱形空腔吸声覆盖层低频吸声性能比较差,建立多层材料圆柱形空腔结构覆盖层的COMSOL有限元模型,通过采用波导有限元-传递矩阵法对有限元模型的验证并对其进行吸声特性数值仿真分析。结果表明:理论计算与数值仿真的曲线趋势大致吻合则该有限元模型有效;多层材料吸声覆盖层低频吸声特性明显优于单层材料吸声覆盖层,并且采用不同穿孔率、损耗因子、杨氏模量等参数的变化分析了各种参数的变化对吸声系数曲线的影响,为下一步的声学优化提供了具体指导。  相似文献   

17.
潜艇首部声呐平台区中、高频自噪声预报   总被引:1,自引:0,他引:1  
潜艇首部声呐平台区结构复杂,激励也是随机和宽带的,其中,高频(500Hz~10kHz)自噪声预报通常采用SEA(统计能量分析).由于缺乏实测和试验资料,各子系统间耦合因子和各结构的内损耗因子难以确定,只能近似估算.本文采用试验和SEA相结合的方法来预报其平台区自噪声.通过模型实验测出子系统在各种激励力下的动响应,进而求得子系统振动能量;采用经验公式计算各子系统模态密度,最后利用统计能量法来预报潜艇首部声呐平台区自噪声,得到了令人满意的结果.  相似文献   

18.
为了减轻船舶结构重量,降低重心,高速船往往采用钢、铝混合结构,两者之间采用过渡接头进行连接会影响结构声波的传递。耦合损耗因子(CLF)作为统计能量分析法的一个关键参数,对船舶舱室噪声预报有着重要影响。基于有限元能量流法构建了相应的数值计算模型,采用Matlab软件编写计算程序,将其应用于某典型钢、铝混合结构的计算中并对其进行了验证,同时还研究了连接接头参数及加筋板对结构耦合损耗因子的影响,结果表明:增加接头的重量或横截面积可以减小中高频段的耦合损耗因子。所编程序可以为该类型船舶的噪声预报及减振降噪提供建议与指导。  相似文献   

19.
针对详细设计阶段易出现的船舶舱室噪声超标问题,依据噪声控制原理,以振动噪声传递路径为切入点,引入SEA图论法,结合振动噪声能量的主导传递路径对2层平板声腔结构降噪设计参数展开声学灵敏度分析,给出降噪设计指导性建议,为船舶舱室降噪设计提供理论支撑;以某VLCC船声学设计实例,采用SEA图论法结合其噪声超标舱室的能量输入谱,确定其噪声主导传递路径的灵敏度,结合评价指标选取最优降噪方案,成功应用于实船(预报值与实测值吻合良好)。可见,基于SEA图论法的船舶舱室噪声的降噪优化设计具有可行性,为降噪声学指标的定量优化设计提供参考。  相似文献   

20.
针对新设计的100 m级海峡车客渡船开展舱室噪声预报和控制研究。使用统计能量分析(SEA)软件VA One预报所有舱室的噪声,由经验公式得到喷水激励、主辅机、泵体和风机等设备的结构噪声和空气噪声,并加载间接式通风空调口振动的实测值。采用特性分析的方法讨论结构噪声和空气噪声的传播方式,结果表明,结构噪声比空气噪声传播得更远。分析不同舱室的主要噪声来源,发现船舶下层结构,即艏楼甲板以下舱室的噪声主要来自机舱内,而上层建筑舱室的主要噪声则间接来自通风空调口。对于噪声超标的舱室,采取敷设阻尼材料和吸声材料以及加装消声器的减振降噪措施。研究表明,统计能量法适用于船舶设计阶段的噪声预报和声学优化计算,所得数据可为今后100 m级实船设计提供参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号