首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 383 毫秒
1.
该文以开口加劲肋正交异性钢桥面铺装体系作为研究对象,建立了包括桥面板和铺装的整体三维有限元分析模型,研究了荷载作用下铺装层的力学特性.分析表明,横向拉应力是开口加劲肋正交异性钢桥面铺装设计的一个重要控制指标;开口加劲肋正交异性钢桥面铺装层问剪应力较大,在铺装结构设计时应注意选择具有较强抗剪强度的粘结材料;开口加劲肋正交异性钢桥面铺装对车辆荷载的应力应变响应具有很强的局部效应.  相似文献   

2.
为综合研究STC层厚度、隔板厚度、栓钉间距对轻型组合桥面结构疲劳性能的影响,分析各参数间的协作性,得到基于该3种参数下轻型组合桥面结构的综合优化设计参数。以某大桥为工程背景,建立ANSYS局部有限元模型,对不同STC厚度、隔板厚度、栓钉间距情形下,钢桥面典型易疲劳开裂细节进行应力幅计算,并采用名义应力法对计算结果进行评估。基于有限元分析结果,得出以下结论:轻型组合桥面结构可以大幅提高钢桥面板的局部刚度,但对于整体刚度的贡献有限。各设计参数下的轻型组合桥面结构,对面板与U肋连接细节应力幅的改善作用均很大,而对其他细节改善作用则相对较小,U肋与隔板交叉处隔板裂纹细节为轻型组合桥面结构的开裂控制细节;STC层厚度由45 mm增加到60 mm可进一步降低钢桥面各疲劳细节应力幅;隔板变厚对U肋与横隔板交叉处隔板裂纹细节、U肋下缘对接焊缝细节应力幅改善较大,降幅为20%~29%;栓钉变密对U肋与横隔板交叉部位、弧形切口处细节改善作用明显,应力幅降低22.01%~27.96%;模拟的12种轻型组合桥面结构方案中,有7种方案的典型疲劳细节均满足疲劳强度设计要求,有一种方案理论上基本不会疲劳开裂。  相似文献   

3.
黄权锋 《城市道桥与防洪》2021,(5):102-103,138
目前国内大多数钢箱梁结构的柔性铺装在使用过程中均出现了铺装层开裂、脱粘、车辙、坑槽等病害,且正交异性钢桥面出现了包括纵肋-面板连接处疲劳开裂、纵肋-横隔板连接处疲劳开裂、横隔板弧形切口处疲劳开裂、纵肋拼接焊缝处疲劳开裂等病害.为避免这些病害情况的产生,采用了钢-超高韧性混凝土(STC)轻型组合桥面铺装型式.  相似文献   

4.
大跨径钢桥面层铺装常见的破坏类型之一是铺装层表面拉应变过大引起的铺装层纵、横向开裂,这是与钢箱梁正交异性面板的加劲肋设计与布置密切相关的。本文将正交异性钢桥面板、铺装层作为整体建模,借助有限元分析软件详细研究了钢桥面板下梯形加劲肋三参数变化对铺装层表面变形的敏感性,并进一步从铺装材料模量变化和不同的荷位分布两方面分析了铺装层表面的横向拉应力分布规律,得到了一些有益的结论,以期为大跨径钢桥桥面铺装设计、桥面铺装层破坏指标的确定和钢桥面系结构刚度设计提供有益的参考。  相似文献   

5.
为解决钢混结合段区域U形加劲肋传力不流畅,受力以及施工复杂等问题,提出一种新型的带板肋的超高性能混凝土(UHPC)轻型组合桥面板,通过有限元分析将其抗疲劳性能与带U肋超高性能组合桥面板进行对比分析研究,并进一步对该结构在负弯矩作用下的承载能力,UHPC层的开裂应力,破坏模式以及荷载挠度关系进行实桥足尺模型试验研究。结果表明:(1)板肋组合桥面结构在疲劳性能上有更大优势,其在疲劳细节2,3,4上的应力幅均大大低于U肋组合结构;(2)足尺模型试验得到板肋轻型组合桥面结构的开裂应力为20.1 MPa略低于U肋轻型组合结构23.6 MPa;(3)板肋组合结构的破坏模式均为加劲肋屈服导致结构丧失承载能力而发生破坏,而U肋组合结构的破坏模式为横隔板屈曲失稳破坏于工程应用不利;  相似文献   

6.
为解决钢桥面铺装层破损和桥面钢结构疲劳开裂两大病害难题,拟将超高韧性混凝土(STC)铺装体系运用于大跨度悬索桥。由于大跨度悬索桥桥面铺装面积大,施工时通常选择分块浇筑的方式,然而STC层自身刚度比沥青铺装大,分块现浇施工时,依次形成强度的各块STC将逐步提高桥面系刚度,与钢桥面形成组合结构协同受力,导致结构在STC浇筑、硬化过程中的受力状态不断发生变化,这种施工过程中的内力重分配,最终会影响设计成桥状态的实现。为了确定STC刚性铺装体系分块现浇施工方案对双跨连续悬索桥成桥状态的具体影响,以杭瑞高速公路上的岳阳洞庭湖大桥主桥为工程背景,利用Ansys软件对STC铺装体系现浇方案进行有限元模拟,基于计算结果比选最优施工方案。结果表明:不同的STC浇筑顺序、分块方式和配重方案对钢梁成桥线形有一定影响,对STC成桥内力影响较大。  相似文献   

7.
为了解新型大纵肋钢-超高性能混凝土(UHPC)正交异性组合桥面板对传统正交异性钢桥面板的受力性能的改善效果,以港珠澳大桥深水区非通航孔6×110m连续钢箱梁桥为背景,建立全桥有限元模型,对2种桥面方案的静力性能进行对比,建立节段有限元模型,对比2种桥面方案U肋与顶板连接焊缝处的疲劳性能,并分析U肋开口宽度和UHPC结构层厚度对大纵肋钢-UHPC正交异性组合桥面板疲劳性能的影响。结果表明:2种桥面方案下钢箱梁控制点的位移和应力相差不大,所提出的大纵肋钢-UHPC正交异性组合桥面板在中等跨度连续梁桥中具有较好的适用性;大纵肋钢-UHPC正交异性组合桥面板的疲劳性能显著优于传统正交异性钢桥面板;增大U肋开口宽度会导致U肋与顶板连接焊缝应力幅增加,增加UHPC结构层厚度能显著降低U肋与顶板连接焊缝应力幅。  相似文献   

8.
崇启大桥主桥采用(102+4×185+102)m六跨变截面钢箱连续梁桥,主桥钢箱梁最高达9 m.在该桥高腹板设计过程中,对国内、外相关标准和规范进行研究,制定高腹板结构设计和验算思路.腹板在顺桥向不同区段采用4种不同的板厚,在箱梁内侧保持平齐.腹板横肋纵向间距1.4m,加劲肋均采用T形构造;腹板纵肋采用扁钢构造.墩顶附近梁段靠近底板的腹板纵肋与横肋焊接,其余部位腹板纵肋在横肋处断开.按照规范方法对腹板强度、最小厚度及纵肋设置位置合理性、纵肋刚度、横肋间距和刚度、区格局部稳定性进行验算,并采用ANSYS建立半桥板单元模型,对腹板强度和局部稳定性进行校核,结果表明,腹板设计满足规范要求.  相似文献   

9.
该文提出了一种新型的带板肋的超高性能混凝土轻型组合结构,通过有限元建模的方法分析了其应用于浙江五一大桥时的抗疲劳性能并与原U肋加劲的钢桥面板进行对比分析。针对该结构在负弯矩作用下UHPC的抗弯拉疲劳性能以及组合结构层间栓钉抗剪疲劳性能开展了足尺模型疲劳性能试验。结果表明:(1)带板肋的组合桥面结构完全解决了传统钢桥面中部分细节疲劳抗性不足的问题;(2)负弯矩疲劳试验得到板肋轻型组合桥面中UHPC层在10MPa弯拉应力幅的作用下经过500万次疲劳荷载作用后裂缝宽度仅为0.09mm,对结构整体性能无明显影响;(3)板肋组合结构中栓钉连接件在90 MPa疲劳应力幅作用下经过50万次循环荷载作用后,未见任何破坏迹象及层间滑移裂缝,换算得到实桥中栓钉抗剪疲劳寿命不小于76 293万次;(4)板肋组合结构中加劲肋在193MPa疲劳应力幅作用下经过50万次循环荷载作用后发生断裂破坏,换算得到实桥中加劲肋疲劳寿命为5 616万次。  相似文献   

10.
清远市北江四桥为双塔单索面超宽幅大悬臂钢-STC桥面板钢-混凝土混合斜拉桥,超宽幅钢-STC轻型组合桥面横向悬臂大的结构特点,使该桥在横向偏载情况下,钢-STC层承受较大的拉应力。钢桥面的疲劳问题一直是桥梁设计关注的重点,对该桥应用热点应力法重点分析STC对该桥钢桥面疲劳性能的影响:超宽幅钢-STC轻型组合桥面的局部刚度由于STC层的介入而大幅提高,降低了钢桥面板的活载应力幅,进而延长疲劳寿命,通过疲劳受力分析对STC层及钢箱梁在横隔板、U肋腹板等疲劳细节位置的抗疲劳性能进行研究。  相似文献   

11.
钢桥面系统各项参数敏感性分析   总被引:10,自引:2,他引:10  
大跨径钢桥桥面系统一般由钢箱梁盖板、纵向加劲肋,横隔板以及沥青铺装层组成,在车辆荷载作用下,铺装层的受力状态相当复杂。作为沥青铺装层的支承体系,钢桥面板体系的结构特性与结构刚度是影响铺装层受力的主要因素,因此就可以通过改变桥各项参数来分析桥面系统刚度的改变对铺装层受力的影响程度。本文利用有限各分析方法,对影响桥面系刚度的各项参数进行分析,揭示了钢桥面沥青铺装层受力大小与桥面系统各项参数的内在联系。  相似文献   

12.
为掌握L型、U型加劲肋对正交异性桥面板铺装结构受力影响和差异,解决薄钢板桥面铺装方案设计与施工一体化问题,延长薄钢板桥面铺装耐久性,依托马房大桥钢桥面铺装维修工程,通过有限元数值模拟分析掌握L型、U型加劲肋桥面铺装体系受力特点和差异,基于钢桥面铺装与桥面板复合结构分析,结合典型铺装材料力学性能试验评价,进行了增韧补强型环氧沥青桥面铺装一体化设计研究,对实体工程的全厚度单层铺装层混合料均匀性、性能进行了试验检测评价。马房大桥L型、虎门大桥U型加劲肋桥面铺装结构对比分析表明,U型加劲肋桥面板的整体刚度高于L型加劲肋桥面板,而L型加劲肋桥面板正交异性显著性相对较低。计算分析表明铺装层模量对铺装层横向应变水平影响呈指数关系,超载率对应变水平呈线性影响。经工程应用验证,采用全厚度单层80 mm环氧沥青铺装施工方案,可满足压实、平整、均匀性的设计要求,全厚度单层钢桥面铺装方案可有效提高铺装体系整体性、缩短施工时间、延长铺装使用寿命。  相似文献   

13.
以在建洞庭湖二桥为工程背景,建立两种纵肋形式的轻型组合桥面板局部有限元模型,对比分析了两类结构的静力和疲劳性能。结果表明:与传统正交异性钢桥面板相比,轻型组合桥面板的静力和疲劳性能均有一定程度的改善,且全寿命经济效益显著;带开口肋的轻型组合桥面板基本消除了传统开口肋正交异性钢桥面板的纵肋过柔,荷载横向分配能力较差等缺点,应用前景广阔。  相似文献   

14.
钢-STC轻型组合结构桥面是基于超高韧性混凝土(STC)基础上研发的一种超级桥面结构;它通过剪力连接件的作用,使密配筋的STC层与正交异性桥面板协同受力,大幅度降低了钢桥面的疲劳应力幅,并有效解决了钢桥面铺装层易破损的世界难题。该文通过株洲枫溪大桥的运用实例,对钢-STC轻型组合结构桥面的施工技术及工艺要点进行总结和归纳,为推动该项技术的应用发展提供经验。  相似文献   

15.
正伊扎克大桥(Illzach Bridge,见图1)位于法国东部城市米卢斯,是一座单跨钢桁架桥,建于1970年。大桥2道华伦式桁架长106m,桥面宽12.6m(净宽11m),采用正交异性钢桥面,布置2条车道(宽8m)和2条人行道。正交异性钢桥面板厚10~14mm,纵向布置有17道U形闭口加劲肋,支撑于34道横梁上,横梁间距3.2m。桥面沥青铺装层采用双层铺装,总厚度80mm。2001年对该桥外观检查时发现183道裂缝,2009年检查时又新增60道裂缝,裂缝主要位于U  相似文献   

16.
为研究中等跨径钢桥标准化桥面铺装层受力性能及整体造价成本,对中等跨径钢桥桥面系不同标准部件组成的正交异性桥面铺装体系进行优化选择,以实现钢桥经济性和安全性的良好结合。将桥面系整体造价及竖向挠度作为优化的目标函数,以挠跨比限值和裸板的横向拉应力、铺装板的横向拉应变限值作为约束条件,考虑顶板厚度、U肋高度和铺装层厚度等主要设计参数,对标准化设计中的桥面系标准部件组合进行优化分析。结果表明:轮载作用在U肋中心位置和满布在U肋中间位置时对裸板和铺装板的受力和变形最为不利;顶板厚度和铺装层厚度对裸板和铺装板的受力与变形影响较大,在设计时应予以关注;顶板厚度取16mm、U肋取U300×260×8-40、铺装层为EA(40mm)+GA(30mm)的正交异性钢桥面铺装体系受力和经济性能最优。  相似文献   

17.
为了研究开口加劲肋正交异性钢桥面铺装的力学行为特性,通过建立钢箱梁和铺装整体三维有限元模型,分析了荷载作用下铺装层最大拉应力、铺装与钢板层间最大剪应力等技术指标的变化及分布规律。得到如下结论:拉应力是导致铺装出现开裂破坏的主要原因,疲劳裂缝应沿桥梁的纵向;当以拉应力作为控制指标时,钢桥面铺装在距离横隔板0.4 m范围内受力最为不利;开口加劲肋正交异性钢桥面铺装应变水平远大于一般沥青路面;铺装对车辆荷载的应力应变响应具有很强的局部效应;铺装与钢板层间剪应力较大,在铺装结构设计时应注意选择具有较强抗剪强度的粘结材料。  相似文献   

18.
佛陈大桥(扩建)连续钢箱梁的桥面采用各向异性钢桥面铺装,为解决钢桥面疲劳裂纹和铺装易损坏的问题,从耐久性出发,转变桥面铺装的设计思路,结合钢箱梁的结构设计,引入了轻型组合桥面结构,在扩建右幅桥试验性地采用超高韧性混凝土(STC)和沥青磨耗层组合铺装结构,提高铺装下层的设计年限和钢桥面的抗疲劳寿命,从而降低铺装层的养护成本和生命周期总成本。通过模型试验,验证该轻型组合桥面结构的抗裂能力,能达到设计要求。  相似文献   

19.
为综合解决正交异性钢桥面板疲劳开裂和铺装层易损的难题,提出了由正交异性钢桥面板与薄层超高韧性混凝土STC组合而成的轻型组合桥面板结构。由于STC层显著提高了桥面板的刚度,因此可对结构进行优化。在带U肋轻型组合桥面板的基础上,提出了带大U肋的轻型组合桥面板方案。将此方案拟应用于某大桥,与原结构相比,用钢量基本不变,而面板-U肋-隔板三者间焊缝总长度减少36%,不仅降低了施工难度,也减少了焊接缺陷,进一步解决了钢桥面板疲劳开裂的问题。采用4种不同的结构体系,建立了钢箱梁节段有限元模型,基于热点应力法,对体系的6个典型疲劳细节进行疲劳验算。结果表明:在大U肋轻型组合桥面板中,6个疲劳细节的应力水平与传统U肋轻型组合桥面板接近,降幅效果基本一致;同时,通过计算说明了大U肋轻型组合桥面板具有良好的横向受力性能,其栓钉也具有足够的抗疲劳性能。为探究此轻型组合桥面板STC层的纵向弯拉性能,开展了负弯矩条带足尺试验,确定大U肋轻型组合桥面板的STC顶层名义开裂应力为24.1 MPa,远超STC层计算最大拉应力10.92 MPa。以上分析初步表明:带大U肋的轻型组合桥面板有较好的疲劳和静力性能。  相似文献   

20.
某三跨连续中承式钢桁拱桥,跨径布置为22 m+56 m+22 m。主桥拱肋是由中拱肋、边拱肋、副拱肋及腹杆组成的桁架结构。主桥跨中设置系梁,主梁由桥面系及横梁组成,桥面系采用正交异性钢桥面,主梁、系梁及拱肋固结连接。桥梁共设置13对吊杆,扇形布置,吊杆锚固采用耳板的结构形式。主要介绍该桥的结构构造设计及受力计算分析,该桥造型新颖优美,受力及构造较为复杂,可为类似工程提供一定的借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号