首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了研究开口加劲肋正交异性钢桥面铺装的力学行为特性,通过建立钢箱梁和铺装整体三维有限元模型,分析了荷载作用下铺装层最大拉应力、铺装与钢板层间最大剪应力等技术指标的变化及分布规律。得到如下结论:拉应力是导致铺装出现开裂破坏的主要原因,疲劳裂缝应沿桥梁的纵向;当以拉应力作为控制指标时,钢桥面铺装在距离横隔板0.4 m范围内受力最为不利;开口加劲肋正交异性钢桥面铺装应变水平远大于一般沥青路面;铺装对车辆荷载的应力应变响应具有很强的局部效应;铺装与钢板层间剪应力较大,在铺装结构设计时应注意选择具有较强抗剪强度的粘结材料。  相似文献   

2.
正交异性桥面结构数值模拟优化分析   总被引:3,自引:2,他引:3  
运用有限元子模型法,分析轮载作用下正交异性钢桥面铺装的受力状态,比较了桥面板厚度、加劲肋厚度等不同结构参数对铺装层受力状态的影响,对正交异性钢桥面结构进行了优化分析,分析结果表明桥面板厚度对桥面铺装的受力状态影响较显著,其影响比加劲肋厚度对铺装的受力状态影响更显著,提出了钢桥面板的优化组合设计模式.  相似文献   

3.
运用有限元子模型法,分析轮载作用下正交异性钢桥面铺装的受力状态,比较了桥面板厚度、加劲肋厚度等不同结构参数对铺装层受力状态的影响,对正交异性钢桥面结构进行了优化分析,分析结果表明桥面板厚度对桥面铺装的受力状态影响较显著,其影响比加劲肋厚度对铺装的受力状态影响更显著,提出了钢桥面板的优化组合设计模式.  相似文献   

4.
大跨径钢桥面结构有限元优化分析   总被引:1,自引:0,他引:1  
运用有限元法分析了轮载作用下正交异性钢桥面铺装的受力状态和桥面板厚度、加劲肋厚度对铺装层受力状态的影响,对正交异性钢桥面结构进行了优化分析。分析结果表明,桥面板厚度对桥面铺装的受力状态影响较显著,提出了钢桥面板的优化组合设计参考数据。  相似文献   

5.
大跨径钢桥面层铺装常见的破坏类型之一是铺装层表面拉应变过大引起的铺装层纵、横向开裂,这是与钢箱梁正交异性面板的加劲肋设计与布置密切相关的。本文将正交异性钢桥面板、铺装层作为整体建模,借助有限元分析软件详细研究了钢桥面板下梯形加劲肋三参数变化对铺装层表面变形的敏感性,并进一步从铺装材料模量变化和不同的荷位分布两方面分析了铺装层表面的横向拉应力分布规律,得到了一些有益的结论,以期为大跨径钢桥桥面铺装设计、桥面铺装层破坏指标的确定和钢桥面系结构刚度设计提供有益的参考。  相似文献   

6.
钢桥面铺装荷载图式是钢桥面铺装力学分析的基础。利用三维有限元方法对265/70R19.5(11.00R20)轮胎与正交异性钢桥面铺装的接触过程进行了模拟,计算出了轮胎与铺装接触的平面分布以及接触区域内应力的分布特性。研究结果表明:轮胎与铺装接触区域的平面形状以及接触区域垂直应力分布等都随着汽车荷载的变化而变化;当汽车轴载超过100kN时,轮胎与铺装接触区域的平面形状近似为矩形;当轮胎作用于正交异性钢桥面U形加劲肋腹板顶面时,轮胎与铺装层接触区域的垂直应力横向分布接近于“凸”形,当轮胎作用域正交异性钢桥面板U加劲肋腹板之间时,接触区域的垂直应力横向分布接近于马鞍形。在钢桥面铺装力学分析时选用双矩形荷载能够较好的模拟轮胎与铺装接触平面的实际状况,而轮胎荷载的横向分布应该综合考虑轮胎作用最不利位置之后决定。  相似文献   

7.
采用有限元方法分析正交异性板桥面铺装体系在车辆荷载作用下的力学响应规律,探求钢桥面铺装破坏的力学机理。比较各种工况的计算结果,确定了每种应力的最不利荷载位置。分析结果表明,钢桥面铺装在轮载作用下的应力最值均位于正交异性板的刚度突变位置,如最大纵向应力位于横隔板上方,最大横向应力及最大剪应力位于加劲肋腹板上方。研究结果可以为正交异性板优化设计及钢桥面铺装设计指标的确定提供理论依据。  相似文献   

8.
大跨径斜拉桥设纵隔板对钢桥面铺装力学特性的影响   总被引:4,自引:0,他引:4  
利用通用有限元ANSYS软件,计算分析大跨径斜拉桥设纵隔板对钢桥面铺装力学特性的影响,并分析纵隔板两侧加劲肋刚度对钢桥面铺装受力的敏感性.结果表明,铺装层表面最大横向拉应力/应变最不利荷位是荷载对称施加于一加劲肋正上方且紧靠纵隔板一侧,该荷位作用下计算加劲肋的挠跨比控制在要求的1/800~1/1 700范围内;铺装层表面最大纵向拉应力/应变和最大竖向位移最不利荷位均是荷载施加于相邻两加劲肋中心之间的正上方且跨过纵隔板.同时指出纵隔板上方铺装层表面出现更明显的应力集中,它可以通过改变纵隔板两侧加劲肋刚度得以降低,而且纵隔板上方铺装层表面最大横向拉应力/应变与纵隔板两侧加劲肋刚度有很好的相关关系.  相似文献   

9.
为了探明在车辆荷载作用下U型肋开口大小、桥面铺装对钢桥面板力学性能的影响,本文以带有U型肋的简支梁钢桥面为研究对象,进行局部建模有限元分析。分析中采用abaqus通用有限元软件建立了9个钢桥面局部模型,U型肋开口及间距分别选取的170mm(密肋形式),320mm(标准形式)和340mm(大开口形式)3种类型、桥面铺装为SMA沥青混凝土材料,并考虑了桥面铺装材料受季节温度的变化。从标准车辆轮载作用下模型典型部位的应力分布、竖向变形等有限元结果可知:(1)桥面铺装有无对标准U型肋及大开口U型肋构造的桥面应力分布影响较大,桥面铺装大大较少了桥面的竖向变形及应力幅值;(2)适当增加U型肋开口大小、间距及钢板厚度,有桥面铺装的情况下,桥面竖向变形满足规范要求,同时有效减小钢桥面应力幅值,提高了钢桥面疲劳性能;(3)季节温度的变化对桥面的变形和应力也有一定的影响,春秋季节时,桥面受车辆荷载作用下产生的应力和变形较小。  相似文献   

10.
沥青混凝土钢桥面铺装方案受力分析   总被引:23,自引:1,他引:23  
采用有限元方法分析在车轮荷载作用下正交异性钢桥面铺装层力学响应,研究铺装上、下层不同的厚度及模量组合对铺装层力学控制指标的影响以及不同铺装方案在超载情况下的铺装层受力状况。研究表明:铺装厚度对于层间剪切应力影响较大,铺装上层的材料模量对于铺装表面的最大拉应力影响较大,铺装下层的材料模量对于层间剪切应力影响较大。研究结果可以为正交异性钢桥面铺装设计提供理论依据。  相似文献   

11.
正交异性钢板-薄层RPC组合桥面基本性能研究   总被引:6,自引:1,他引:5  
为了解决正交异性钢桥面铺装层破损及钢桥面结构疲劳开裂2类病害问题,提出了一种新型正交异性钢板-薄层超高性能活性粉末混凝土(RPC)组合桥面结构体系。基于某大桥建立有限元模型,并对比计算了纯钢梁和组合桥面结构中桥梁主缆索力和桥面系应力状态;同时,开展了足尺条带模型静载试验。研究结果表明:采用新型钢-RPC组合桥面结构后,钢面板及纵肋中应力明显降低且最大降幅超过70%,而主缆索力几乎不增加;RPC层开裂前的拉应力可达42.7MPa,远高于其在实桥荷载作用下10.08MPa的拉应力;该新型钢-RPC组合桥面结构可提高桥面系的刚度,降低钢桥面结构中的应力,从而能够基本消除钢桥面疲劳开裂的风险。  相似文献   

12.
正交异性钢桥面新型复合铺装结构研究   总被引:2,自引:1,他引:1  
针对正交异性钢桥面存在的主要破坏形式,提出其铺装层相应的4个主要设计指标:铺装层表面拉应力、铺装层与钢桥面板层间剪应力、铺装层垂直压应变和铺装层剪应力。利用有限元方法,以铺装层与含加劲肋和纵横隔板的正交异性钢桥面局部梁段作为计算对象,进行有限元分析,分析各个设计指标随铺装过渡层模量和铺装层厚度的变化规律。首次提出以水泥基材料为过渡层、焊钉为剪力连接件和SMA13为表层的新型复合铺装系统,并进行了热相容试验、高温复合车辙试验和复合梁疲劳试验等一系列小型试件试验研究。研究结果表明,增大铺装过渡层模量或适当增加铺装层厚度,有助于降低正交异性钢桥面板的应力和应变,使铺装层总体受力越有利;与传统双层沥青混凝土铺装结构相比,新型复合铺装系统性能更优越。  相似文献   

13.
针对柔性铺装正交异性钢桥面板存在的钢板疲劳开裂和铺装层极易损坏的问题,提出超高性能混凝土(UHPC)-钢正交异性板组合桥面体系。以武汉军山长江大桥为背景,通过ANSYS有限元仿真计算分析该组合桥面体系正交异性板相对于柔性铺装正交异性板受力性能的改善情况,并通过单U肋2跨连续梁足尺模型试验对UHPC层的受力性能进行研究。研究结果表明:采用组合桥面后正交异性板各构造细节的应力大幅下降,其中面板应力降幅最大,加劲肋次之,横隔板最小;采用UHPC-钢正交异性板组合桥面体系后正交异性板主要构造细节最不利热点应力幅降至常幅疲劳极限以下,理论上具有无限疲劳寿命;模型试验显示在实桥最不利应力作用下,UHPC层未发现可见裂纹,当名义应力达到18.79 MPa时在模型中支撑板顶部UHPC上发现0.05mm宽的裂纹。  相似文献   

14.
为了准确地分析钢桥面铺装层在荷载作用下粘弹性力学特性,基于大型通用有限元软件ABAQUS平台,建立钢桥面铺装体系有限元分析模型,对其在车轮荷载作用下的粘弹性力学响应进行求解.结果表明:最大横向拉应力出现在与荷载作用区域相邻U形加劲肋的铺装层顶面,最大挠度出现在车轮荷载所作用的中心点;同时由于沥青铺装层的蠕变和松弛特性,各种响应均随时间和温度的变化而呈现出较为复杂的变化趋势;随加载时间的延长,各响应逐渐趋于稳定.  相似文献   

15.
针对钢桥面环氧沥青混凝土铺装结构,建立正交异性钢桥面铺装三维力学模型,研究低温-重载耦合作用下钢桥面铺装的力学特性,并与不考虑温度作用的结果进行对比分析。结果表明,低温-重载耦合作用下钢桥面铺装拉应力显著增大,最大拉应力可达荷载单独作用的四倍。  相似文献   

16.
为了给正交异性钢桥面板铺装技术提供可靠的、完善的理论依据,需要研究和分析钢桥面板、沥青混凝土铺装体系各层间结构,在日益增大的交通荷载以及环境等综合因素作用下的工作状态和应力应变特征.利用有限元方法对北盘江大桥进行了钢桥面铺装层受力分析,研究了沥青混凝土铺装层在行车荷载作用下应力、应变分布的变化规律.根据分析结果,提出北盘江大桥钢桥面铺装的设计指标建议.  相似文献   

17.
为掌握L型、U型加劲肋对正交异性桥面板铺装结构受力影响和差异,解决薄钢板桥面铺装方案设计与施工一体化问题,延长薄钢板桥面铺装耐久性,依托马房大桥钢桥面铺装维修工程,通过有限元数值模拟分析掌握L型、U型加劲肋桥面铺装体系受力特点和差异,基于钢桥面铺装与桥面板复合结构分析,结合典型铺装材料力学性能试验评价,进行了增韧补强型环氧沥青桥面铺装一体化设计研究,对实体工程的全厚度单层铺装层混合料均匀性、性能进行了试验检测评价。马房大桥L型、虎门大桥U型加劲肋桥面铺装结构对比分析表明,U型加劲肋桥面板的整体刚度高于L型加劲肋桥面板,而L型加劲肋桥面板正交异性显著性相对较低。计算分析表明铺装层模量对铺装层横向应变水平影响呈指数关系,超载率对应变水平呈线性影响。经工程应用验证,采用全厚度单层80 mm环氧沥青铺装施工方案,可满足压实、平整、均匀性的设计要求,全厚度单层钢桥面铺装方案可有效提高铺装体系整体性、缩短施工时间、延长铺装使用寿命。  相似文献   

18.
由于正交异性钢桥面板第二体系受力的复杂性,不同参数对其影响不易明确,以某钢箱梁桥为例,采用ANSYS有限元软件对比分析了不同铺装厚度、不同顶板厚度、不同加劲肋刚度对钢桥面板第二体系应力的影响。结果表明,适当增加桥面铺装可显著减小第二体系应力,而顶板厚度、加劲肋厚度的影响较小,可以忽略。  相似文献   

19.
改性沥青SMA在钢桥面铺装工程的应用   总被引:2,自引:1,他引:1  
广东汕头石大桥为主跨 5 18m的正交异性板加劲钢箱梁与P .C .箱梁混合结构半悬浮弹性体系斜拉桥 ,桥面铺装采用改性沥青SMA。简要介绍汕头石大桥改性沥青SMA钢桥面铺装的设计、施工及质量检验。  相似文献   

20.
根据江西南昌洪都大桥的实际情况建立正交异性钢箱梁桥面铺装体系的力学模型,从铺装层材料与厚度、有无纵向腹板、3种荷载工况等方面,通过有限元计算,研究了正交异性钢桥面板铺装体系的力学特性,进而提出了大跨径钢葙梁桥面铺装结构设计要求.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号