首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 512 毫秒
1.
本文旨在研究纯电动汽车制动能量回收的评价方法。从制动能量回收的机理入手,分析了制动能量回收系统的制动力分配和整车能量流;引入新的制动器效能因数和电机制动力分配系数的概念,推导出制动轮缸压力与制动能量之间的关系;提出了评价制动能量回收效果的3个评价指标,分别为制动能量回收率、节能贡献度和续驶里程贡献度;并进行了仿真和实车试验。结果表明,制动能量回收率可反映制动能量回收系统的节能潜力,节能贡献度能反映制动能量回收系统对整车节能的贡献度,评价指标稳定、合理。  相似文献   

2.
对某电动汽车机电复合制动系统进行了研究,制定了电动汽车机电复合制动系统的结构方案。依据ECE-R13法规与最大电机制动力限制,确定机电解耦门限值,对小强度制动、中强度制动及紧急制动3种不同工况分别制定了不同的再生制动与液压制动控制策略,并进行仿真与试验验证。结果表明,在小强度制动时电机可满足驾驶员的需求制动力,并且能量回收率能够达到25%;在中强度制动时电机以最大制动力进行制动并且在最大回收能量的同时能够使该系统满足制动性能,能量回收率能够达到74%;在紧急制动时为了制动安全应迅速将电机制动力撤出。该复合制动系统能够有效地吸收再生制动能量,同时也能满足车辆的制动性能。  相似文献   

3.
轻度混合动力汽车制动能量回收控制策略研究   总被引:12,自引:0,他引:12  
李蓬  金达锋  罗禹贡  任勇  许少文 《汽车工程》2005,27(5):570-574,606
以某轻度混合动力电动汽车为研究对象,分析了,制动能量回收系统在制动回收工作过程中的控制策略,并在分析的基础上建立其在制动过程中的制动力分配模型和数学模型,利用6个典型的循环工况来评价现有制动力分配策略的优劣,并与Advisor中的制动力分配策略进行了比较。无论是燃油经济性、整车能量效率、回收能量占燃油消耗的百分比,还是能量回收率都有明显的提高。  相似文献   

4.
分析电动汽车制动能量回收的制约因素,综合汽车制动动力前、后轮制动力分配,电机制动与机械制动并行控制和电池耐受性分析,提出了制动能量回收的联合控制策略.基于Simulink和Cruise软件平台进行了系统建模和联合仿真.结果表明该联合控制策略能够实现法规制动条件下的制动能量回收,回收率达13.7%,提高续驶里程16.4%.  相似文献   

5.
电动汽车再生制动控制算法研究   总被引:3,自引:0,他引:3  
李玉芳  林逸  何洪文  陈陆华 《汽车工程》2007,29(12):1059-1062,1073
以"在满足车辆制动性能要求、保证车辆制动稳定性的前提下,最大限度地回收再生制动能量"为原则,对电动汽车再生制动力与制动器制动力的分配算法进行研究,得到车辆制动时制动力的控制算法,最后以某电动车辆为例进行仿真分析。制动力分配算法对车辆再生制动和机械制动的分配规律的制定具有较好的参考作用。  相似文献   

6.
文章以某款纯电动车制动能量回收系统为研究对象,首先,设计一种电液助力系统,阐述其结构方案和工作原理,接着基于该电液助力系统开展纯电动车串行制动能量回收系统设计研究,包括结构方案、控制方案、电气方案;实现在某款纯电动车产品上的搭载应用开发,结果表明,基于该电液助力系统的纯电动车能量回收系统,实现车辆在制动或减速阶段,机械-液压制动力与电机回馈制动力实时协调,最大限度地回收制动能量,并且获得较好的制动稳定性和“踏板感”,单个ECE循环工况经济性贡献率最高达28.9%。  相似文献   

7.
电动汽车复合制动由电机再生制动与机械摩擦制动两部分构成,其控制性能直接影响车辆的能量利用效率、制动安全性以及舒适性。围绕静态制动转矩分配控制、动态复合制动协调控制、制动换挡控制、智能辅助驾驶中的复合制动控制4个方面的研究现状与关键技术展开综述,并对复合制动控制未来研究方向进行了展望。对文献的梳理分析表明:制动转矩分配决定着复合制动系统能量回收能力与车辆制动稳定性,基于规则的分配策略面对复杂多变工况自适应性欠佳,而基于优化的分配策略各方面性能表现良好,但需要兼顾控制实时性与优化效果;利用电机响应迅速与控制精确的优势完成复合制动协调控制,能够提升制动模式切换过渡工况与紧急制动工况的控制性能,改善驾驶舒适性;制动过程中实施合理换挡可以进一步提升能量回收效率,同时通过补偿控制解决换挡过程中动力中断和转矩冲击等问题,保证换挡平顺性;随着电动汽车智能化和网联化发展,复合制动控制与驾驶人辅助系统相结合有助于在保证系统功能的同时实现能量回收效益最大化。  相似文献   

8.
电动汽车能够有效利用可再生能源,具有清洁无污染特点,但受制于动力电池技术影响,存在续驶里程有限等缺陷。为保证纯电动汽车制动安全,提高制动能量回收利用率,对纯电动汽车机电复合制动系统组成及控制原理、模糊控制电机制动力分配、前后轴制动力分配的动力分配方式等方面进行讨论,并提出纯电动汽车机电复合制动能量回收控制措施。  相似文献   

9.
制动能量回收技术能大幅提高整车能量经济性,已成为电驱动车辆的一项关键技术和核心竞争力的重要因素之一。本文中总结了电驱动乘用车制动能量回收系统的组成与分类,综述了国内外电驱动乘用车制动能量回收系统产品研发的最新进展,分别从液压执行机构、系统控制和系统评价3个方面对制动能量回收系统的关键技术进行分析,最后对制动能量回收技术的发展趋势进行了展望。  相似文献   

10.
为提高电动汽车制动时回收的能量,减少能源浪费,本文中提出了一种基于电子机械制动(EMB)系统的再生制动力分配策略。首先,根据制动踏板信号得到当前制动强度,结合前后轴制动力分配策略分别得到前轴、后轴制动力。然后以车速、电池SOC值和制动踏板行程为输入,再生制动占比为输出,创建模糊控制器,且以制动时回收能量最大化为优化目标,运用PSO算法优化模糊控制器。最后进行Simulink和AVL Cruise的联合仿真。结果表明,在NEDC工况下能量回收提升2.5%,在CLTC-P工况下能量回收提升1.56%。  相似文献   

11.
续驶里程及蓄电池供电技术是目前制约新能源汽车普及的主要因素。再生制动技术作为提高整车能量利用率的有效方案,为新能源汽车续驶里程的提高提供了一条切实可行的解决思路。针对再生制动关键技术,分别阐述了再生制动控制策略研究和再生制动能量管理研究两个方面的研究成果。针对再生制动策略问题,分别从制动意图识别、制动力分配以及轮缸压力控制三方面总结了再生制动相关控制策略;针对能量管理问题,分别从制动能量回收潜力与能量回收效果评估两方面对研究成果进行了总结。分析了通过能量流机理计算车辆节能潜力的方法,并对未来再生制动关键技术的研究与发展趋势进行了展望。  相似文献   

12.
分析了目前汽车制动能量回收利用现状,在蓄电池储能方案的基础上,提出了利用制动能量驱动SR电机工作,将制动过程中的动能转化为电能给用电设备或给蓄电池充电;在汽车起步或加速过程中,SR电机既为传动系提供动力又带动压气机给发动机提供压缩空气改善燃烧。  相似文献   

13.
由于再生制动控制策略直接影响了插电式混合动力汽车(PHEV)的经济性,文章提出了一种基于理想制动力分配的再生制动控制策略,这种策略能在保证制动稳定性的同时,尽可能多地回收制动能量,在Simulink平台上建立再生制动控制策略模型,并嵌入到Cruise软件中进行仿真。仿真结果表明,此模型相比没有制动能量回收的PHEV和传统汽车,都有效地提高了经济性,验证了再生制动控制策略的合理性。  相似文献   

14.
Most parallel hybrid electric vehicles (HEV) employ both a hydraulic braking system and a regenerative braking system to provide enhanced braking performance and energy regeneration. A new design of a combined braking control strategy (CBCS) is presented in this paper. The design is based on a new method of HEV braking torque distribution that makes the hydraulic braking system work together with the regenerative braking system. The control system meets the requirements of a vehicle longitudinal braking performance and gets more regenerative energy charge back to the battery. In the described system, a logic threshold control strategy (LTCS) is developed to adjust the hydraulic braking torque dynamically, and a fuzzy logic control strategy (FCS) is applied to adjust the regenerative braking torque dynamically. With the control strategy, the hydraulic braking system and the regenerative braking system work synchronously to assure high regenerative efficiency and good braking performance, even on roads with a low adhesion coefficient when emergency braking is required. The proposed braking control strategy is steady and effective, as demonstrated by the experiment and the simulation.  相似文献   

15.
模糊PID控制的电动汽车再生制动系统变换器的研究   总被引:1,自引:1,他引:0  
提出了利用超级电容作为储能元件实现电动汽车再生制动的能量回收方案,分析了电动汽车控制系统的双向DC/DC变换器和电机驱动器的驱动降压电路、制动升压电路,设计了该控制系统的模糊自整定PID控制器。通过仿真研究表明,在车辆驱动降压变换时,模糊自整定PID控制的超级电容器在150 A左右的大电流放电情况下,超级电容仍能维持2.5 s的指定电压输出,车辆在额定功率下工作,通过降压变换,超级电容储存的能量迅速供给电机,有效提高了驱动电流,改善了起动及加速性能,有效增加了续驶里程。在制动升压变换时,模糊自整定PID控制的超级电容器电流基本跟随指令值上下波动,超级电容电压从120 V不断上升,使得该电容器的储能能力得到充分利用,实现了高水平的能量回收。  相似文献   

16.
分析了电动汽车制动能量回馈的特点,针对电动汽车制动能量回馈时强鲁棒性的需求,设计了一种基于Sugeno模糊逻辑的制动能量回馈系统,以满足能量回馈的要求,该回馈系统提高了整车的制动性能以及续驶里程,也使整车的动力性、安全性和舒适性达到较好的平衡,文章同时估算了这种控制策略的能量回收效率。经仿真和实际测试,结果表明所提策略满足总体设计的性能指标要求。  相似文献   

17.
The regenerative braking system of the Hybrid Electric Vehicle (HEV) is a key technology that can improve fuel efficiency by 20∼50%, depending on motor size. In the regenerative braking system, the electronically controlled brake subsystem that directs the braking forces into four wheels independently is indispensable. This technology is currently found in the Electronic Stability Program (ESP) and in Vehicle Dynamic Control (VDC). As braking technologies progress toward brake-by-wire systems, the development of Electro-Mechanical Brake (EMB) systems will be very important in the improvement of both fuel consumption and vehicle safety. This paper investigates the modeling and simulation of EMB systems for HEVs. The HEV powertrain was modeled to include the internal combustion engine, electric motor, battery and transmission. The performance simulation for the regenerative braking system of the HEV was performed using MATLAB/Simulink. The control performance of the EMB system was evaluated via the simulation of the regenerative braking of the HEV during various driving conditions.  相似文献   

18.
再生制动技术可以有效回收车辆制动能量,是提高电动汽车续驶里程的重要途径,超级电容具有高功率密度、高效率的特点,利用蓄电池-超级电容组成的复合电源作为电动汽车的储能装置可以改善电池工作状态,提高电池寿命及可靠性,并提高能量回收率。目前使用复合电源(蓄电池-超级电容)进行再生制动的电动汽车多采用并联形式,针对此类状况,基于无源串联复合电源结构设计其再生制动系统,其主要由电机、超级电容组、整流桥和控制器组成。在控制策略上,采用电压反馈恒定电流制动方式,基于脉冲宽度调制(PWM)控制,在制动过程中根据电动汽车车速与超级电容端电压实时调节PWM的占空比以实现目标制动电流恒定。在MATLAB/Simulink平台上建立再生制动系统仿真模型,验证所提控制策略的有效性,并利用某电动汽车对所设计系统进行滑行、制动等试验。研究结果表明:相比有源并联式复合电源,该系统不需要DC/DC转换器,结构及控制简单,该系统能够较好地实现制动能量回收,所采用的控制策略能够有效地实现恒电流制动,电制动减速度稳定,同时具有较高的能量回收率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号