首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
为明确部分内填混凝土设计方案在焊接整体钢桁梁结构中的适用性,设计了2组不同混凝土填充范围的T形焊接整体节点试件,对其在水平和竖向荷载下的静力性能进行试验研究,分析了弦杆内填混凝土长度对节点刚度、应力应变分布、极限承载力、破坏模态等性能指标的影响.结果表明:与空心节点相比,弦杆内部分或完全填充混凝土之后,节点的弦杆翼板压屈破坏得到有效避免,钢板应力水平出现较明显降低,且节点的弹性刚度、屈服强度和极限强度显著提高;而部分填充混凝土方案与完全填充混凝土方案的节点力学性能则区别甚微.  相似文献   

2.
邓淑飞  张开金 《公路》2022,(6):107-115
为研究钢管混凝土K形节点脱空后的承载力以及防脱空措施,通过有限元方法,模拟计算了钢管混凝土K形节点脱空后的力学性能,提出了防脱空建议,并进行了验证。结果表明,当支管壁厚较小时,不同脱空率下节点破坏模式均为受压支管局部屈曲破坏,极限承载力大致相同,脱空只影响节点弹性刚度,且节点弹性刚度随着脱空率的增大而逐渐减小;支管管壁较厚时,破坏模式为主管表面塑性破坏或冲剪破坏;随着脱空率的增大,节点的刚度及承载力均逐渐下降;主管内增设PBL后,主管表面刚度得到提高,不同脱空率下节点破坏模式均变为受压节点的局部屈曲破坏,各模型承载力大致相同;相比于原脱空钢管混凝土节点,节点刚度及承载力均有提高;PBL可显著降低核心混凝土脱空产生的不利影响,当脱空率较大时,PBL作用更加明显。  相似文献   

3.
为研究方钢管混凝土T型节点的力学性能,建立了钢管混凝土以及空钢管T型节点的有限元模型,对支管受拉时的疲劳性能及支管受压时的静力性能进行了有限元对比分析,采用二次外推法给出了节点不同位置的应力集中系数,并采用非线性分析得出了支管受压时的极限承载力。结果表明:主管内填混凝土节点的最大热点应力出现在主管表面支主管交界的角隅处;空钢管节点的最大热点应力出现在靠近支主管焊缝的支管上;主管内填混凝土能够显著降低节点的应力集中程度;钢管混凝土T型节点在支管受压时的承载力要显著高于空钢管节点。  相似文献   

4.
为了进一步研究内设加劲肋钢管柱填充混凝土后的力学性能,参照某桥上、下弦杆截面,进行了内设加劲肋钢管混凝土柱的轴压短柱试验,得到了试件的极限承载力和破坏模式,并与内设加劲肋空钢管柱进行了对比。试验研究结果表明:内设加劲肋钢管混凝土柱力学特征存在明显三阶段破坏,破坏模式与设直肋薄壁钢管混凝土柱有所同,发生"半波"、"双波"破坏不及薄壁钢管混凝土柱明显。同时,采用大型通用有限元程序ANSYS建立了三维有限元模型,对试件的承载力和荷载应变曲线进行了分析,分析结果与试验结果吻合良好,在此基础上进一步分析了宽厚比对设加劲肋钢管混凝土柱受力性能的影响。  相似文献   

5.
钢管混凝土桁式结构广泛应用于桥梁工程中。为探明钢管混凝土节点的破坏机理,得到其承载力计算方法,系统汇总了国内外报道的圆形和矩形钢管混凝土节点试验数据,并根据节点形状和支管受力形式,分为139个受压节点、16个受拉节点和38个K型节点,分析主管内填混凝土对节点构造、破坏模式和承载力的改善,提出钢管混凝土节点设计流程和承载力计算方法。研究结果表明:在满足节点构造和焊接要求前提下,主管表面钢板层状撕裂破坏、焊缝破坏和受拉支管背面主管顶板局部屈曲破坏可以有效避免。对于受压节点,空钢管节点可能发生主管侧壁屈曲或表面屈服线破坏,而主管内填混凝土后,其破坏模式变为横向局部承压破坏,承载力平均提高8.3倍,不需要进行受压节点验算;对于受拉节点,管内混凝土能提高节点受拉刚度,破坏模式趋于主管表面冲剪破坏;对于K型节点,承载力以受拉支管控制,主要发生主管表面冲剪破坏,其强度与支管有效宽度破坏相当,即实现节点和钢管杆件等强设计,此外,考虑主管混凝土抗剪贡献后,主管抗剪承载力提高1.1~1.3倍;提出了钢管混凝土节点设计流程,并给出其节点承载力计算方法,圆形和矩形钢管混凝土节点均以受拉支管控制,需进行主管表面冲剪破坏和支管有效宽度破坏验算,同时,矩形钢管混凝土节点还需进行主管间隙处剪切破坏验算。  相似文献   

6.
《公路》2017,(10)
为了充分研究钢筋与混凝土之间的黏结长度对钢筋混凝土构件力学性能的影响,通过理论分析,推导出部分无黏结钢筋混凝土构件承载力计算公式,并在此基础上,使用理论公式和有限元数值模拟分析方法进行了分析与比对。结果表明,钢筋与混凝土之间有无黏结对钢筋混凝土构件的极限承载力无影响;随着无黏结长度的增长,构件的整体变形量增大、开裂区减小和黏结界面易出现应力集中现象。  相似文献   

7.
为探究钢-UHPC组合结构与普通钢-混组合结构中PBL剪力键力学性能的差异性,通过推出试验和有限元分析相结合的方法对其展开详细研究。首先,对9个UHPC试件和9个普通混凝土试件进行推出试验,根据2种混凝土试件中PBL剪力键的破坏形态、荷载-滑移曲线及应变分布规律揭示其失效机制及力学性能的差异,分析贯穿钢筋直径和钢板开孔数对PBL剪力键力学性能的影响;然后,采用试验结果验证的有限元模型开展参数分析,详细探讨UHPC强度、钢板开孔孔径、贯穿钢筋屈服强度和钢板厚度对PBL剪力键极限抗剪承载力的影响;最后,基于试验和有限元分析结果,提出考虑钢纤维的PBL剪力键极限抗剪承载力计算公式。结果表明:受钢纤维的影响,UHPC的裂缝发展受到限制,且较普通混凝土裂缝数量少、宽度小;UHPC试件中贯穿钢筋发生明显屈服,以剪切破坏为主;单孔PBL剪力键的极限抗剪承载力主要取决于贯穿钢筋直径,而受混凝土强度影响较小;多孔PBL剪力键的极限抗剪承载力主要取决于贯穿钢筋直径和混凝土强度;与普通混凝土试件相比,UHPC试件的抗剪刚度提升了2~3倍,双孔剪力键极限抗剪承载力约提高41%,三孔约提高56%;钢板开孔孔径、贯穿钢筋屈服强度和钢板厚度均是影响PBL剪力键抗剪承载力的因素;提出的PBL剪力键极限抗剪承载力计算公式计算结果与试验结果吻合度高。  相似文献   

8.
矩形钢管混凝土桁架节点极限承载力研究   总被引:10,自引:2,他引:10  
采用退化壳单元和三维实体单元分别模拟钢管和混凝土,考虑材料非线性、钢管与混凝土的接触非线性,对矩形钢管混凝土桁架节点的极限承载能力进行了研究。采用该方法对Y型节点、X型节点、T型节点以及K型节点进行非线性有限元分析得到的极限荷载值与试验破坏荷载值较为吻合。为矩形钢管混凝土节点极限承载力的分析提供了一个合适的方法,同时为矩形钢管混凝土桁梁桥节点的设计方法提供了理论依据。  相似文献   

9.
为了分析横向分段施工预应力混凝土斜箱梁(简称分段合成斜箱梁)与整体浇注预应力混凝土斜箱梁(简称整体浇注斜箱梁)极限承载能力差异,建立分段合成斜箱梁和整体浇注斜箱梁的两个大比例试验模型;在两个模型的关键截面布设应变和挠度测点,采集两者在分级加载试验过程的挠度、应变数据,观测混凝土开裂情况。对采集的数据整理分析,比较两者在加载过程中结构的开裂情况、极限承载能力大小和受力性能的差异。根据结构受力特点,提出分段合成斜箱梁极限承载力的有限元分析方法;应用有限元程序ANSYS对两个试验模型的极限承载能力进行分析,分别与试验结果进行比较,验证了有限元模型的准确。通过试验和有限元比较分析,结果表明分段合成斜箱梁跨中截面湿接缝的混凝土先于整体浇注斜箱梁混凝土开裂,整体浇注斜箱梁梁肋底部混凝土先于湿接缝对应位置的混凝土开裂,且前者的开裂荷载低于后者,但两者的极限承载力相差甚微,基本相等;通过有限元分析斜交角和抗弯抗扭刚度比两个参数,表明整体浇注斜箱梁的极限承载能力随着斜交角的增加而增大,随着抗弯抗扭刚度比的减小而增大,但增大幅度较小。  相似文献   

10.
为给新型预制拼装钢-混组合梁桥设计施工提供参考,针对该类桥采用集束式长短剪力钉的布置特点,考虑剪力钉不同直径、长度、强度和混凝土强度等因素,开展集束式长短剪力钉的抗剪性能、极限承载能力有限元分析和试验研究。采用推出试验的方法,设计制作18个剪力钉推出试件,考察剪力钉长度和直径对集束式长短剪力钉抗剪极限承载力的影响,提出集束式长短剪力钉的群钉荷载-滑移曲线公式。同时,考虑混凝土、剪力钉、钢梁和钢筋的材料非线性,采用ANSYS软件建立推出试验的有限元模型,分析混凝土强度、剪力钉强度、剪力钉相对位置、混凝土板厚等参数对集束式长短剪力钉抗剪力学性能的影响规律,提出集束式长短剪力钉的单钉极限抗剪承载力计算公式。研究结果表明:短剪力钉的直径和抗拉强度、混凝土强度对集束式长短剪力钉的抗剪承载力和刚度有明显影响;而短剪力钉的长度、长短剪力钉的相对布置位置和混凝土板厚对集束式长短剪力钉的抗剪承载力和刚度影响较小;提出的计算公式计算值与试验值吻合较好。  相似文献   

11.
采用考虑材料非线性的钢管混凝土拱空间极限承载力计算方法对1个X型双肋拱与1个平行双肋拱进行了空间极限承载力计算.在该方法中,对钢管混凝土拱结构采用纤维单元模型,该模型假定钢管与混凝土完全粘接,钢管对核心混凝土的套箍作用体现在以一维形式表达的核心混凝土的应力-应变关系曲线之中,针对材料非线性分析中单元内各点刚度参差不齐的特点,采用单元内设小元的方法(相当于子结构),编制了非线性有限元程序,在该程序中,计算模型完全是基于小元层次进行的,比如单元刚度矩阵由小元刚度矩阵凝聚而成,单元节点的残余力由小元节点的残余力构成,故只需改变单元内小元个数这1个参数就可实现对结构的重新划分且极大地降低了非线性方程组的阶数,非常方便且实用.在程序计算结果得到模型试验结果验证的基础上,还对不同的横撑根数对结构空间极限承载力的影响进行了分析.  相似文献   

12.
钢管混凝土拱空间极限承载力高精度分析   总被引:1,自引:2,他引:1  
采用考虑材料非线性的钢管混凝土拱空间极限承载力计算方法对1个X型双肋拱与1个平行双肋拱进行了空间极限承载力计算。在该方法中,对钢管混凝土拱结构采用纤维单元模型,该模型假定钢管与混凝土完全粘接,钢管对核心混凝土的套箍作用体现在以一维形式表达的核心混凝土的应力-应变关系曲线之中,针对材料非线性分析中单元内各点刚度参差不齐的特点,采用单元内设小元的方法(相当于子结构),编制了非线性有限元程序,在该程序中,计算模型完全是基于小元层次进行的,比如单元刚度矩阵由小元刚度矩阵凝聚而成,单元节点的残余力由小元节点的残余力构成,故只需改变单元内小元个数这1个参数就可实现对结构的重新划分且极大地降低了非线性方程组的阶数,非常方便且实用。在程序计算结果得到模型试验结果验证的基础上,还对不同的横撑根数对结构空间极限承载力的影响进行了分析。  相似文献   

13.
为了研究混凝土填充高度对部分填充圆形钢管混凝土桥墩柱抗震性能的影响,根据混凝土填充高度的不同设计了4根桥墩柱试件,其中1根空钢管桥墩柱和3根部分填充圆形钢管混凝土桥墩柱。通过在桥墩柱顶施加恒定的轴向压力及水平低周往复荷载的拟静力试验获得各试件荷载-位移滞回曲线及破坏形态等试验数据。利用各试件荷载-位移骨架包络曲线和耗能能力等试验结果,分析了混凝土填充高度对该类桥墩柱抗震性能的影响。结果表明:混凝土的填充没有改变桥墩钢管局部失稳的破坏形态,但延缓了钢管失稳变形的发展;同时随着混凝土填充高度的增加极限承载力、延性、耗能能力等都有较大提高,达到极限承载力后,承载力下降随着混凝土填充高度的增加变缓,表现出良好的抗震性能。  相似文献   

14.
为明确波纹钢管加固不同破损程度混凝土管涵的力学性能及机理,采用室内两点加载试验,对波纹钢管加固的未破坏、部分破坏和完全破坏的混凝土管涵进行研究,获得加固管的荷载-位移曲线、破坏特征和截面应变分布,基于破坏特征和截面应变分布假设加固系统为套管体系(Ⅱ类管),根据变形协调条件推导极限承载力的估算公式,并论述套管体系中各个管体的荷载分配机制。研究结果表明:波纹钢管不同程度地提高了混凝土管涵的承载能力和刚度;加固后的复合管为套管体系,荷载分配依据各个管体的环刚度大小,加固管极限承载力的计算值与实测值之间的误差小于10%;只要待加固的混凝土管涵未完全破坏,波纹钢管对钢筋混凝土管的加固效果相近,即部分破坏与未破坏的钢筋混凝土管涵采用波纹钢管加固后的承载能力相近,而完全破坏的钢筋混凝土管涵加固后的承载力较低;填充层不仅起到黏结作用,而且在荷载分配方面起着重要作用;当钢筋混凝土管涵从未破坏到完全破坏时,填充层所分担的荷载迅速增加(由30%增至80%),而波纹钢管分担的载荷仅略有增加(由7%增至18%);当填充层的刚度从0增加到35 000 MPa时,填充层所分担的荷载从0增加到58%,钢筋混凝土管涵分担的荷载从69%下降到29%,波纹钢管分担的荷载由31%下降到13%。  相似文献   

15.
为研究混杂纤维混凝土螺栓剪力键的极限承载力、滑移特性及破坏模式,设计3组10个推出试件进行试验研究,分析纤维、螺栓直径、螺栓孔径比等对混杂纤维混凝土螺栓剪力键的承载力、螺栓拉力、破坏模式及荷载-滑移特性的影响。试验结果表明:增大螺栓直径,可以明显提高螺栓剪力键的承载力,其中Φ22直径螺栓较Φ16,Φ19的螺栓的承载力分别提高了1.83倍、1.39倍;孔径比越小,螺栓剪力键的承载力和初始刚度越大,极限滑移量明显增加;随着混凝土强度降低,螺栓剪力键极限承载力和初始刚度明显降低,滑移量则有所增加;掺入纤维后可以提高螺栓剪力键的承载力和初始刚度,对极限滑移量改善不明显;钢混界面黏结力提高后,剪力键的初始刚度有所增加,承载力和滑移量则明显减少。最后,在试验结果的基础上,通过拟合方法提出了钢-混杂纤维混凝土螺栓剪力键承载力计算公式和荷载-滑移曲线公式,为其设计提供参考。  相似文献   

16.
为研究钢管混凝土系杆拱桥关键节点的受力行为,以某钢管混凝土系杆拱桥为工程背景,采用有限元方法对其全过程非线性受力行为进行深入分析。首先,建立钢管混凝土拱桥整体模型,对其整体受力行为进行分析,提取系杆拱桥关键节点在设计荷载工况下的最不利内力情况;然后以力边界条件形式施加给节点三维精细有限元模型,对拱脚节点和拱肋吊装节点在设计荷载工况下进行应力分析,探讨2种节点在设计荷载工况下的受力行为;最后,考虑材料非线性行为,采用弧长法对2类节点极限承载力进行分析,探讨其承载非线性行为及安全储备。研究结果表明:这2种节点构造形式在设计荷载工况下均安全可靠,且具有较大的安全储备;拱脚节点区拱肋钢管与系梁上翼缘板相交处存在明显的应力集中现象,该处构造复杂,焊缝多,设计时应重点关注;吊装节点区下弦钢管径向刚度小,采用环向加劲肋加强后,对钢管刚度及承载力均有显著改善。  相似文献   

17.
为研究钢-HSSFC (High Strength Steel Fiber Concrete,高强钢纤维混凝土)组合结构中PBL剪力键的力学性能,共设计制作了4组12个试件,并进行推出试验,研究其破坏形态、荷载-滑移曲线,分析破坏机理。试验结果表明:采用HSSFC的PBL剪力键具有更高的极限承载力、延性、抗剪刚度和裂缝抑制能力。最后基于本试验提出的极限承载力计算公式物理意义明确,与试验结果吻合良好,可以指导钢-HSSFC组合结构下PBL剪力键的设计。  相似文献   

18.
经合理设计的防落梁限位装置可以有效减小地震发生时桥梁上、下部结构间的相对位移,阻止落梁破坏的发生,而明确限位装置力学性能是对其进行合理设计的必要前提。为探明缓冲型防落梁钢圈限位装置的滞回性能和破坏模式,并提出极限位移和极限承载力的计算方法,制作了6个试件进行拟静力试验研究。分析了钢材种类、限位装置截面高度h和直线段长度a等设计参数对其力学性能的影响,试验结果表明:①在初期的加、卸载过程中,试件以弯曲变形为主,刚度及承载力低。由于弧段部位过早出现塑性,卸载后出现永久性变形;试件在反复加载过程中,累计塑性变形增加,后期以拉伸变形为主,刚度大。试件达到最大承载力后,发生颈缩、断裂破坏,最终丧失承载能力。②分析试件圆弧段测得的应变,加载初期内侧受拉,外侧受压;随着位移的增加,弧段外侧达到最大压应变后,试件被拉直,中性轴偏离截面形心;破坏时,试件各部位均出现较大的拉应变。③参数a对试件启动限位功能时机影响较大,对试件初期刚度几乎没有影响;参数h增加时,承载力的增长速率、初期刚度以及最大承载力均增加,但对位移影响较小;改变钢材种类对承载力影响较大,对位移影响较小。在试验研究的基础上,提出了该类限位装置的极限承载力与极限位移计算公式,并验证了计算公式的有效性。  相似文献   

19.
在φ600旋喷桩上部中心位置压入一定长度的Φ108微型钢管,形成微型钢管桩芯-旋喷桩复合桩基(简称复合桩)。对复合桩静载荷试验的荷载-沉降曲线进行了区段分析,确定了其极限承载力实测值为1080 kN。对该复合桩基4种破坏模式下的抗压极限承载力进行计算分析对比后发现,复合桩芯底位置处发生水泥土压碎破坏的可能性最大,抗压极限承载力最小,为1125 kN。通过数值模拟对复合桩的极限承载力,桩侧摩阻力分布,破坏模式下的塑性变形,荷载分担比等进行了分析。  相似文献   

20.
该文提出了一种新的双壁钢围堰支撑体系节点形式,在内撑杆端部的内、外侧壁板之间设置隔舱并填充混凝土,从而加强支撑杆端部节点的刚度,节约钢材,减小焊接工作量。工程实例分析表明:与采用暗梁骨架受力体系相比,采用填充混凝土作为支撑体系节点,增强了内、外侧壁板的连接刚度,内、外壁板及填充混凝土三者形成夹芯板结构,与内支撑杆协同受力,侧向变形减小约16.4%,内壁板等效应力降低约44.4%。可见填充混凝土节点增大了结构刚度,提高了局部受力性能,改善了钢围堰的受力状态,优于传统的暗梁、暗柱骨架受力体系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号