首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
磁悬浮列车高速运行时受到较大气动升力作用,尤其是尾车向上的气动升力较大,易使悬浮性能恶化,甚至导致悬浮控制系统失效,影响列车的乘坐舒适性及运行安全性,因此亟待开展高速磁悬浮列车的尾车升力特性研究及改善工作. 对开展过风洞试验的高速磁悬浮列车进行数值模拟计算,得到的列车表面压力系数与风洞实验数据吻合较好,并加装气动翼改善高速磁悬浮尾车气动升力,研究了气动翼角度、数量对尾车气动性能的影响. 研究结果表明:仅安装一个气动翼时,其自身的气动升力随角度的增加而减小,但尾车气动升力则呈现先减小后增大的规律,气动翼角度为12.5° 时尾车升力最小,与原始磁悬浮列车相比气动升力系数减小3.9%,气动翼及尾车气动阻力略有增加;以气动翼与车体切线角度保持不变为基准在尾车安装多个12.5° 气动翼,不同位置气动翼的气动阻力基本相同,气动翼数量增加后尾车气动阻力随之增大;不同位置气动翼的气动升力存在差异,向鼻尖方向气动翼的气动升力递减,尾车气动升力随气动翼数量增加先减小后趋于稳定;各方案中安装2个气动翼的磁悬浮列车气动性能相对更优,与原始磁悬浮列车相比尾车气动升力减小4.6%,整车阻力仅增加1.4%.   相似文献   

2.
建立了7种不同直径上臂杆和7种不同直径下臂杆的受电弓模型,对受电弓进行空气动力学数值模拟计算,采用多体动力学方法计算了受电弓的气动抬升力,从气动力及流场特性的角度研究了受电弓上下臂杆直径对受电弓气动性能、气动抬升力的影响规律。研究结果表明:开口运行工况上臂杆气动升力和受电弓气动抬升力都随着上臂杆直径增加而增大,随着下臂杆直径增大而减小,但下臂杆直径对受电弓气动抬升力的影响较小;闭口运行工况上臂杆气动升力和受电弓气动抬升力都随着上臂杆直径增大而减小,随着下臂杆直径增加而增大;开闭口运行工况上臂杆主体杆件气动阻力仅为上臂杆气动阻力的3%~10%,气动升力为上臂杆气动升力的26%~55%,下臂杆主体杆件气动阻力为下臂杆气动阻力的10%~25%,气动升力为下臂杆气动升力的43%~68%,直径的改变对上下臂杆气动升力的影响较大,对气动阻力的影响较小;闭口运行工况上下臂杆气动阻力的绝对值都大于开口运行工况。   相似文献   

3.
将气动阻力和气动升力作为优化目标,对高速列车头尾几何外形进行多目标优化设计.选取列车头尾横向、纵向、垂向三个方向共8组节点位置作为设计变量,利用网格变形技术得到需要进行仿真的样本.采用Fluent软件对3节编组高速列车在明线上运行的周围流场进行仿真计算,并得到其气动阻力和气动升力特性.通过响应面方法构造这两种气动特性对设计变量的响应关系,对其进行多目标优化设计得到优化后的列车外形,其气动阻力降低13.66%,且气动升力有效减小至1.46 N.  相似文献   

4.
横风对双层集装箱平车运行稳定性的影响   总被引:14,自引:2,他引:14  
采用流场数值模拟计算方法,计算了横风作用时的垂向气动升力系数、气动横向力系数和侧滚力矩系数,得出各系数与车辆速度和风速之间的变化关系。从动力学角度,根据力矩平衡原理推导了横风作用时车辆稳定性计算关系式,根据车辆运行的实际情况得出双层集装箱平车在不同装载情况下的临界倾覆风速和风速之间的关系,并分析了垂向气动升力、横向气动力和侧滚力矩对车辆倾覆稳定性的影响。结果显示,横风引起的力中气动横向力占主导作用;空车比重车的临界倾覆风速低;重车比空车的临界运行车速低。  相似文献   

5.
为研究强降雨对高速列车空气动力学性能的影响, 利用Euler-Lagrange方法建立了强降雨环境下高速列车空气动力学计算模型; 空气建模为连续相, 采用Euler方法描述, 雨滴建模为离散相, 采用Lagrange方法描述, 并采用相间耦合方法对降雨环境进行模拟; 分别开展列车气动性能计算及雨滴降落仿真, 并与试验数据进行对比, 验证计算方法的准确性; 数值仿真了强降雨环境下高速列车的流场结构和气动特性。计算结果表明: 随着降雨强度的增加, 在雨滴的冲击作用下, 流线型头型前端区域的正压逐渐增大, 流线型头型后端区域的负压逐渐减小, 从而导致头车气动阻力增大; 降雨强度对高速列车头车气动阻力系数的影响较为显著, 而对气动升力系数的影响较小; 与无降雨环境相比, 当降雨强度为100~500 mm·h-1时, 200 km·h-1车速下的气动阻力系数增加0.004 0~0.020 4, 气动阻力增加85~432 N, 增大率为2.64%~13.46%;300 km·h-1车速下的气动阻力系数增加0.002 7~0.013 7, 气动阻力增加129~652 N, 增大率为1.78%~9.05%;400 km·h-1车速下的气动阻力系数增加0.002 3~0.009 8, 气动阻力增加195~829 N, 增大率为1.52%~6.49%, 因此, 不同车速下, 气动阻力系数随着降雨强度的增加而增大, 且与降雨强度近似呈线性关系; 当车速为300 km·h-1, 降雨强度为100 mm·h-1, 雨滴粒径由2 mm增加为4 mm时, 气动阻力系数由0.152 0增大到0.154 9, 气动阻力增加138 N, 增大率为1.91%, 因此, 高速列车气动阻力系数随着雨滴粒径的增加而增大, 且与雨滴粒径近似呈线性关系。   相似文献   

6.
为提高明线运行的高速列车气动性能,以头车气动阻力和尾车气动升力为优化目标,对高速列车头型进行了多目标自动优化设计.以某新型高速列车为原型,建立了包含转向架区域的高速列车参数化模型,提取了7个设计变量,分别控制鼻尖高度、端盖开闭机构顶端高度、驾驶室车窗高度、水平最大外轮廓线横向宽度、头型中部辅助控制线凹凸度、转向架区域横向宽度和隔墙倾角,并基于计算流体动力学理论,建立了高速列车空气动力学模型.应用该模型计算作用在列车上的气动力,通过多目标遗传算法自动更新设计变量,实现了高速列车头型的自动优化设计.对优化目标与设计变量的相关性进行分析,结果表明:驾驶室车窗高度和转向架区域横向宽度对头车阻力影响最大,头型鼻尖高度和中部辅助控制线凹凸度对尾车升力影响最大;优化后得到6个Pareto最优头型,与优化前的头型相比,头车阻力最多减小3.15%,尾车升力最多减小17.05%.   相似文献   

7.
针对某型大学生方程式(FSC)赛车的整车绕流场展开计算流体力学(CFD)分析与优化。利用三维建模软件CATIA对车身、车架、发动机总成、车轮及舱内模型进行建模、装配并生成风洞分析模型。采用集成于ANSYS Workbench环境下的流体分析软件CFX对此模型进行仿真分析,着重分析了赛车在正面风向状态下的受力情况及气流流态。仿真计算结果显示,原型车风阻较大,多处流场存在明显的紊流,影响了气动性能及赛车的速度性;气动升力及纵倾力矩偏大,影响赛车的驾驶稳定性。根据原型车的仿真结果,对车身及其他部件的优化改进提出几种策略,通过CFX仿真计算得出其优化效果。在对各项策略的优化效果进行详细分析后,通过选择优化效果好的策略、剔除无作用甚至反作用的策略以及多策略组合的办法,完成对原型车的优化设计。优化后赛车的气动性能得到提升,整车的气动阻力、气动升力及纵倾力矩均得到改善。  相似文献   

8.
为减小高速列车在运行过程中的气动阻力,提出一种基于边界层控制的减阻技术。以CRH3高速列车为研究对象,通过在车体表面加设球窝非光滑表面来控制边界层的湍流特性,实现列车运行减阻效果;通过PRO/Engineer三维软件建立了高速列车模型、参数化的球窝模型和计算域模型,在不影响研究效果的前提下,对高速列车模型进行简化处理以减少数值仿真计算周期;为使网格能够更好地贴合流线型车体和球窝非光滑表面,采用ICEM CFD软件对计算域进行非结构网格划分;在考虑列车表面粗糙度对气动阻力的影响工况下,应用商业流体软件FLUENT中的k-ε湍流模型对列车在300km·h~(-1)明线运行工况下的列车外流场进行数值仿真分析。仿真结果表明:只在尾车加设球窝非光滑表面更有利于列车减阻,且随球窝的半径、深度和阵列距离的增大,列车的气动阻力均呈先下降后上升的趋势;当球窝阵列距离为350mm,球窝半径为80mm,球窝深度为10mm时,球窝非光滑表面的减阻效果最好,此时气动阻力为2 220.4N,没有加设球窝非光滑表面的列车气动阻力为2 967.9N,减阻率可达25.19%。可见,采用球窝非光滑表面来改变边界层湍流特性是降低列车气动阻力的有效途径。  相似文献   

9.
为了优化汽车的空气动力学特性.利用计算流体力学软件FLUENT,对某款高级轿车的简化模型进行了3维数值模拟,分析了在2种车速下,未加装后扰流板和加装各种攻角的后扰流板汽车的气动特性,得出了后扰流板攻角对汽车气动特性的影响规律,同时比较了后扰流板不同攻角工况下尾部的外流场,并分析了加装后扰流板后对汽车尾部流场的改善情况。  相似文献   

10.
基于粘性流体力学理论,按三维可压缩粘性流对具有流线型头部形状的TR08列车以及通过变化流线型头部纵剖面高度或流线型头部长度设计出的4种新头型列车的周围流场进行了数值模拟。为评估不同流线型头部外形的气动阻力性能,定义了表示其形状特征的整体长细比作为评估依据,综合考虑了流线型头部水平投影形状和纵向对称面投影形状对气动阻力性能的影响。通过对5种不同头型列车的模拟结果进行对比分析,得出了流线型头部外形对气动阻力性能影响的规律:随着流线型头部长度增加,气动阻力降低,而中间车阻力变化不大;在头部流线型长度相当的情况下,纵剖面轮廓线上凸的头车气动阻力比下凹的小,而尾车气动阻力大。计算得到的不同流线型列车的整体长细比大小排序与其气动阻力系数排序完全一致。分析结果表明,增加流线型头部长度是减小气动阻力的有效途径;整体长细比能较好地反映流线型头部对列车气动阻力性能的影响。  相似文献   

11.
通过数值仿真方法研究了滑移地面以及旋转轮对对明线运行列车气动性能的影响。首先,建立了三车编组列车计算模型,考虑固定和滑移两种不同的地面边界条件、固定和滑移两种不同的路基边界条件、静止和旋转两种不同的轮对边界条件;其次,基于风洞试验数据验证了数值仿真的可靠性,表明了剪切应力运输湍流模型和网格划分的可行性和有效性;最后,对比四种不同组合下的明线运行列车气动性能。研究结果表明:固定地面将得到偏低的列车气动阻力系数,约减少4.27%;滑移路基使得尾车气动阻力系数和整车阻力增加约1.87%,引起这一差异主要原因在于地面和路基的表面附面层厚度差异;静止轮对和旋转轮对对列车气动阻力和升力系数都小于1.0%,因此,列车气动风洞试验可以忽略轮对旋转的影响,考虑地面边界和路基边界的影响。  相似文献   

12.
为研究川藏铁路温度与气压条件变化对动车组隧道气动阻力的影响,通过调研川藏铁路雅安至林芝段各站点气象数据,建立了川藏铁路特殊高原气象条件下动车组列车隧道气动阻力的计算模型,分析了川藏铁路沿线气压与温度变化对动车组隧道气动阻力的影响. 研究结果表明:动车组列车的隧道气动阻力与线路环境的气压、温度密切相关;环境气压越低,隧道气动阻力越小,环境温度越低,隧道气动阻力越大;与平原地区的气象环境相比,川藏铁路沿线气压变化对动车组列车隧道运行阻力的影响能达到30%左右,温度变化对动车组隧道运行阻力的影响在10%左右.   相似文献   

13.
为减少高速列车在运行中的气动阻力及噪声,提高列车运行效率、节约能耗,提升旅客乘坐舒适度,提出凸包非光滑表面减阻技术应用于高速列车领域。以CRH3型高速列车为研究对象,通过在车体的头部和尾部加设凸包来控制湍流特性,以达到减阻、降噪效果。首先,利用PRO/Engineer建立非光滑表面CRH3高速列车简化模型,采用ICEM CFD软件对模型划分非结构网格;其次,应用Fluent流体仿真软件基于标准模型对稳态运行速度为300 km/h时的列车进行仿真计算空气阻力;最后,利用宽频带噪声模拟气动性能良好的列车外表面噪声。结果显示:将间距为460 mm、半径为40 mm、高度为10 mm的凸包阵列结构布设在前挡风玻璃周围对减小气动阻力有积极作用,阻力值为3 715 N,减阻率为1.77%,而此参数凸包非光滑对列车裙板上缘有普遍降噪效果,最大降噪率为1.72%,而对车鼻处及车顶部则会增加噪声。研究表明,通过在头车加设凸包可以改变边界层湍流特性达到减小列车气动阻力及降低部分位置气动噪声的效果。  相似文献   

14.
为研究地面边界条件对汽车外流场数值模拟的影响,制定了两种方案对某微型车进行数值模拟计算,并对结果进行分析.研究表明:不同的地面边界条件对汽车的底部流场有很大的影响,而对上部流场影响不大;不同的地面边界条件对汽车的气动升力和前轮的升力影响很大,对气动阻力和后轮升力影响较小;在汽车的外流场数值模拟中,采用移动地面条件可以提高数值模拟的精度.  相似文献   

15.
为了获得地面效应对汽车模型气动阻力的影响,在中国空气动力研究与发展中心Φ3.2m风洞对1∶3的MIRA汽车模型进行了风洞试验,采用移动带作为统一的研究平台,研究了地面静止与运动,车轮静止与旋转,以及车身不同离地间隙对气动阻力的影响;模拟了横摆角为0°的无侧风工况,固定试验风速为25m·s~(-1),变雷诺数试验风速为15~26m·s~(-1);仅对汽车模型进行气动力测量,主要关注气动阻力,试验结果以量纲为1的气动阻力系数表示。分析结果表明:当静止地面边界层厚度与车身底面离地间隙之比不大于0.32,且车轮下表面与车身底面离地间隙之比(定义为量纲为1的离地间隙)不大于0.37时,静止地面比运动地面的气动阻力略小,差异小于1.1%,因此,可以忽略地面状态对气动阻力的影响;车轮静止比车轮旋转下的气动阻力略小,差异小于2.1%,因此,在工程应用中,当不能模拟车轮旋转时,应考虑修正(增加)气动阻力,但修正量不宜大于2.1%;随着车轮下表面离地间隙的增加,气动阻力总体呈现逐渐减小的趋势,且在量纲为1的离地间隙为0.069~0.370时,气动阻力差异小于2.0%,因此,在采用移动带开展汽车模型风洞试验时,在确保车轮不与移动带带面接触的情况下,车轮下表面到带面间隙应尽可能小。  相似文献   

16.
提出一种简单高斯模型描述局部波前畸变,并在此基础上以透射式光学天线为例,研究星间光通信中局部波前畸变对对准精度的影响。理论分析和仿真结果表明,局部畸变半径、畸变深度以及畸变位置是对准偏差的3个主要影响因素。  相似文献   

17.
采用三维粘性、可压缩、非定常流的N-S方程,分别考虑列车速度、阻塞比和隧道长度对双层集装箱列车所受气动阻力的影响,用有限体积法对双层集装箱列车通过隧道时所受的气动阻力进行数值分析.分析结果表明:当列车进入隧道时,所受气动阻力急剧上升,其后,该气动阻力有些波动,但仍保持较高的气动阻力状态,为明线运行时的2~3倍;在同一运...  相似文献   

18.
顺向斜风对行车安全的影响不容忽略,为考查顺向斜风对运动车辆气动特性的影响,采用移动车辆模型风洞试验装置,针对缩尺比为1/20的车辆和桥梁模型,测试了顺向斜风作用下运动车辆的气动特性,讨论了风速、风向和风屏障等因素对移动车辆气动特性的影响. 结果表明:移动车辆的五分力系数在不同风速时吻合较好;侧向阻力系数、升力系数和点头力矩系数随着合成风偏角的增大而减小;风偏角较小时,风向角对车辆的升力系数有较明显的影响;风屏障使车辆的气动力系数接近0,且明显地改变了车辆气动力系数随风偏角的变化规律;设置风屏障后,车辆阻力系数的变化率受风偏角、车速和风速等条件的影响.   相似文献   

19.
为考虑侧向风作用下车辆运动对车-桥系统气动特性的影响,基于研制的移动车辆模型风洞试验系统,针对轨道交通车辆和公路交通车辆,分别采用三车模型和单车模型,测试了不同工况下车辆、桥梁的气动力系数,讨论了车速、风向角、车辆在桥上所处轨道位置以及车辆类型等因素对车辆和桥梁气动特性的影响.研究表明,随着车速的增大和合成风向角的减小,车辆阻力系数和升力系数存在增大的趋势,车速对单车模型气动力系数的影响更显著;车辆在桥上所处轨道位置不同对车辆、桥梁气动力系数的影响均较大,桥梁气动力系数对车速和合成风向角不敏感.  相似文献   

20.
研究了高速磁浮列车在定常气动荷载作用下曲线上的运动稳定性。建立了考虑气动荷载影响的高速磁浮车在曲线导轨上的动力学模型,经过特征值分析提出了磁浮车的临界速度概念,分析了临界状态时车速、控制参数、气动系数对高速磁浮车曲线导轨上的临界速度影响。结果表明:当系统达到临界状态时,它有两个临界速度。在临界状态条件,位移控制参数由20 000 kN/m降为2 000 kN/m,气动系数从0.05降为0.01,第一类临界速度变大。第一个临界速度出现特征值的实部为零而虚部不为零,第二个临界速度出现在特征值的实部和虚部都为零。失稳是由于偏离平衡位置引起的,位置由曲线导轨特征和侧风荷载产生。气动升力和向心的风荷载会提高稳定性;气动降力和离心的风荷载会降低稳定性;水平角可与向心力配合,竖直角允许设置的范围小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号