首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为减少高速列车在运行中的气动阻力及噪声,提高列车运行效率、节约能耗,提升旅客乘坐舒适度,提出凸包非光滑表面减阻技术应用于高速列车领域。以CRH3型高速列车为研究对象,通过在车体的头部和尾部加设凸包来控制湍流特性,以达到减阻、降噪效果。首先,利用PRO/Engineer建立非光滑表面CRH3高速列车简化模型,采用ICEM CFD软件对模型划分非结构网格;其次,应用Fluent流体仿真软件基于标准模型对稳态运行速度为300 km/h时的列车进行仿真计算空气阻力;最后,利用宽频带噪声模拟气动性能良好的列车外表面噪声。结果显示:将间距为460 mm、半径为40 mm、高度为10 mm的凸包阵列结构布设在前挡风玻璃周围对减小气动阻力有积极作用,阻力值为3 715 N,减阻率为1.77%,而此参数凸包非光滑对列车裙板上缘有普遍降噪效果,最大降噪率为1.72%,而对车鼻处及车顶部则会增加噪声。研究表明,通过在头车加设凸包可以改变边界层湍流特性达到减小列车气动阻力及降低部分位置气动噪声的效果。  相似文献   

2.
高速列车受电弓杆件减阻降噪研究分析   总被引:1,自引:0,他引:1  
高速列车受电弓是列车高速运行时气动阻力和气动噪声的主要来源之一。为探索受电弓杆件的减阻降噪方法,基于仿生学思想将高速列车受电弓光滑表面设计成螺纹型非光滑结构,同时研究在螺距和螺纹直径参数下对气动阻力和气动噪声的影响。选取高速列车受电弓杆件的典型尺寸建立流体仿真分析模型,采用非结构化混合网格,利用Standard k-ε湍流模型及宽频噪声模型,通过数值方法计算流场的分布特征和气动噪声大小。计算结果表明:螺纹型非光滑结构能更好地影响圆柱体尾涡区的形成,是有效降低高速列车受电弓杆件气动阻力和气动噪声的关键。为了进一步探究螺纹型非光滑结构杆件对高速列车受电弓减阻降噪的影响,设计了凹槽螺纹型和凸陷螺纹型两种不同结构杆件,分别在不同的螺距和螺纹直径参数下进行流场计算结果分析。结果表明,在350 km/h的风速下,螺距和螺纹直径参数一定时,凸陷螺纹型杆件的减阻降噪效果要优于凹槽螺纹型结构;其中,螺距PPD=60 mm,螺纹直径d=1 mm的凹槽螺纹型杆件具有最优减阻降噪效果,单个杆件的减阻率达3%;而对于凹槽螺纹型杆件类型,螺距PPD一定时,d/D的比值在0.017~0.067范围内,随着螺纹直径d的增大气动阻力和气动噪声均升高,当d/D数值超过0.067之后有显著降低气动阻力和气动噪声的趋势。  相似文献   

3.
中国高速列车气动减阻优化综述   总被引:3,自引:3,他引:0       下载免费PDF全文
研究了中国高速列车气动减阻优化进展,总结了典型部件的压力分布特性与各部件在列车气动阻力中的贡献占比,评析了惰行试验、风洞试验与数值模拟3种列车气动阻力研究方法,论述了和谐号、复兴号等系列列车头型气动性能的差异,阐述了高速列车头型气动减阻优化方法与技术,梳理了转向架区域、车端连接处、受电弓及导流罩等局部不平顺区域的气动减阻措施,归纳了适用于高速列车的前沿减阻技术。研究结果表明:数值模拟和风洞试验各有优缺点,经过风洞试验有效验证的数值模拟是准确计算列车气动阻力的有效途径; 列车气动阻力中贡献占比的主要部件为头车、尾车、转向架、受电弓与车端连接处; 由于现有高速列车的高度流线化,头型优化较难实现大幅度的减阻,改善转向架区域裙板、设计全包外风挡与优化受电弓和导流罩外形是进一步减阻的有效措施; 减阻降噪、提升运行平稳性和舒适性等多目标优化是列车头型设计的发展趋势,通过直接寻优计算或者代理模型寻优计算能够提高优化效率与降低优化设计成本; 未来应重点研究高速列车的仿生表面微结构、吹吸气流动控制、等离子体减阻与涡流发生器减阻技术,实现中国高速列车的绿色、节能、高速化发展。   相似文献   

4.
为研究量纲为1的参数y+值对车辆气动参数计算精度的影响, 以阶梯背MIRA模型为基础, 在保证模型网格数量与质量相近的情况下调整近壁网格尺寸, 构建不同y+值的流场仿真模型; 考虑到不同的湍流模型对车辆外流场仿真的y+值具有不同的适用范围, 选取SST κ-ω和LES两种常用的湍流模型对阶梯背MIRA模型外流场进行稳态和非稳态仿真分析; 将气动参数仿真结果与试验结果进行对比分析, 得出合适的y+值取值范围; 结合仿真速度云图和车身表面受力曲线分析了边界层首层网格厚度对仿真精度的影响; 建立了方背MIRA模型在2种湍流模型下的外流场仿真模型, 进行不同流速下气动参数的计算, 从而对y+值取值范围进行验证。研究结果表明: 针对车辆外流场数值仿真, 采用SST κ-ω模型时对应的合适平均y+值取值范围为20~50, 而采用LES模型时对应的合适平均y+值取值范围为5~10;当边界层首层近壁网格厚度过大时, 数值仿真无法准确捕捉边界层中速度梯度的变化, 造成边界层流场流动信息丢失, 而当边界层首层近壁网格厚度过小时, 边界层网格会严重畸变, 2种情况下气动参数计算误差都超过5%, 从而影响车辆外流场数值仿真精度; 根据所获得的y+值取值范围, 方背MIRA模型计算的气动参数误差小于5%, 说明了2种湍流模型平均y+值取值范围的正确性。   相似文献   

5.
将气动阻力和气动升力作为优化目标,对高速列车头尾几何外形进行多目标优化设计.选取列车头尾横向、纵向、垂向三个方向共8组节点位置作为设计变量,利用网格变形技术得到需要进行仿真的样本.采用Fluent软件对3节编组高速列车在明线上运行的周围流场进行仿真计算,并得到其气动阻力和气动升力特性.通过响应面方法构造这两种气动特性对设计变量的响应关系,对其进行多目标优化设计得到优化后的列车外形,其气动阻力降低13.66%,且气动升力有效减小至1.46 N.  相似文献   

6.
为减少钝头列车的气动阻力,对车头圆顶、车体底罩、车间风挡的假想模型进行数值模拟计算。结果表明:钝头列车加装车体底罩及车头前部圆顶等结构,并以高于100km/h的速度运行时,减阻效果良好,行驶速度越高,减阻效果越明显。  相似文献   

7.
利用计算流体动力学的方法,对光滑表面MIRA阶梯背模型进行了外流场数值模拟与试验验证;根据仿生非光滑表面减阻理论,确定了凹坑型非光滑单元体的布置位置及尺寸,并对凹坑型非光滑单元体结构因素对减阻特性的影响进行仿真分析;并基于正交实验设计对凹坑型单元体的结构因素进行优化,仿真表明最优结构组合的减阻率可达10.54%;最后从压差阻力、诱导阻力和摩擦阻力3个方面对凹坑型非光滑单元体最优结构组合改进前后的减阻机理进行了对比分析,显著提高了车身的减阻效果。  相似文献   

8.
以CRH2型高速列车穿行隧道过程的气动特性为研究对象,建立了列车模型及具有不同缓冲结构、不同阻塞比的隧道计算模型,并与相同工况下的模型实验进行对比,验证了仿真模型的可行性.以kε-湍流模型为基础,对高速列车以不同速度进入具有不同缓冲结构、不同阻塞比的隧道时的外流场进行了仿真模拟.分析了列车在进入隧道时压缩波的产生机理,得到了列车表面风口在车体进入隧道过程中的压力波动情况.仿真结果表明:隧道缓冲结构的缓冲性能按抛物线型、线性、不连续性的顺序依次减小;压力值随阻塞比增大而线性减小.由此提出了减小列车进入隧道时表面压力波动的方法.  相似文献   

9.
本文利用作者博士研究生期间提出的三维钝体湍流绕流数值计算方法和计算程序,在国内首次对高速列车头型及车体横截面优化进行数值模拟研究,了解流线型头型各几何参数与形阻关系以及横截面各几何参数对横风下列车稳定性、安全性的影响。为京沪线高速列车推荐出综合考虑气动阻力、压力波特性的最佳头型,计算结果与西南交通大学XNJD-1风洞试验结果吻合很好。  相似文献   

10.
通过数值仿真方法研究了滑移地面以及旋转轮对对明线运行列车气动性能的影响。首先,建立了三车编组列车计算模型,考虑固定和滑移两种不同的地面边界条件、固定和滑移两种不同的路基边界条件、静止和旋转两种不同的轮对边界条件;其次,基于风洞试验数据验证了数值仿真的可靠性,表明了剪切应力运输湍流模型和网格划分的可行性和有效性;最后,对比四种不同组合下的明线运行列车气动性能。研究结果表明:固定地面将得到偏低的列车气动阻力系数,约减少4.27%;滑移路基使得尾车气动阻力系数和整车阻力增加约1.87%,引起这一差异主要原因在于地面和路基的表面附面层厚度差异;静止轮对和旋转轮对对列车气动阻力和升力系数都小于1.0%,因此,列车气动风洞试验可以忽略轮对旋转的影响,考虑地面边界和路基边界的影响。  相似文献   

11.
高速列车车头外形优化   总被引:1,自引:0,他引:1  
针对高速列车气动性能,探讨一种列车车头外形优化仿真方法,利用优化软件Sculptor对某高速列车车头司机室观测窗处曲面进行重构,并运用流体数值仿真软件Fluent对重构模型进行数值模拟,计算结果显示,降低司机室观测窗处曲面的高度,有利于降低列车的气动阻力.  相似文献   

12.
随着高速列车运行速度的提高,其气动噪声问题逐渐凸显,如何准确快速预测高速列车的远场气动噪声成为关键.利用半自由空间的Green函数求解FW-H方程,推导了考虑半模型时的远场声学积分公式,提出通过半模型的数值计算结果预测全模型高速列车远场气动噪声的方法;建立了全模型和半模型高速列车的气动噪声数值计算模型,应用改进延迟的分离涡模拟方法对不同模型高速列车表面的气动噪声源进行求解;通过风洞试验进行了全模型高速列车的数值仿真计算方法验证;对比分析了全模型和半模型高速列车周围的流场结构、气动噪声源和远场气动噪声特性.结果表明:半模型高速列车数值计算得到的列车周围流场结构、气动噪声源以及远场气动噪声特性与全模型的一致;采用半模型计算会过高估计列车尾车流线型区域表面压力的波动程度和噪声源的辐射强度,但通过半模型预测整车模型的远场噪声平均声压级误差小于1 dBA;相比于全模型高速列车,半模型计算时的网格总量减少一半.  相似文献   

13.
横风工况下高速动车组空调表面气动性能数值分析   总被引:1,自引:1,他引:0  
通过采用不可压缩粘性流体的N-S方程和k-ε双方程湍流模型,建立了高速动车组模型,对其在不同横风工况下运行的外流场进行了空气动力学仿真.分析动车组空调表面的压力分布规律,结果表明:列车空调机组所受阻力值由头车至尾车逐渐减小,横风等级增加,阻力值变化不大;空调机组进出口表面负压值及冷凝器进出口压差随横风等级的增加而增大,...  相似文献   

14.
对Mira阶梯背模型外流场进行数值模拟并验证,表明仿真结果可靠;研究了非光滑单元体类型对气动性能的影响,结果表明半球形凹坑减阻效果最优,减阻率为4.87%;采用正交试验方法研究了凹坑型非光滑单元体的排列方式、深度、纵横间距(纵横为等间距)等对气动性能的影响,结果表明影响减阻效果的主次因素为非光滑单元体的深度、纵横间距、速度、排列方式,其中最优组合减阻率为6.07%。  相似文献   

15.
为降低高速列车的气动阻力,对高速列车流线型头尾进行优化设计.建立高速列车空气动力学模型,基于三维黏性不可压缩控制方程组和两方程湍流模型,对明线上运行的3节编组列车周围流场模拟计算.构造6个优化设计变量关于空气阻力的响应面函数.结果表明,各优化设计变量之间相互耦合,和优化目标之间存在非线性关系,同时得到了各设计变量对空气阻力的贡献率.优化后,空气阻力值降低10.8%.  相似文献   

16.
利用SST k-w湍流模型计算了高速列车的外部非定常流场,提取了车身表面的脉动压力;基于统计能量分析理论,建立了高速列车车内中高频气动噪声分析模型,确定了模型中各个子系统的参数,计算了由车外脉动压力诱发产生的车内气动噪声.计算结果表明:高速列车车头的脉动压力变化最剧烈;在中高频范围内,司机室和乘客室的声压级随着频率的增...  相似文献   

17.
高速列车进入隧道的气动作用数值模拟   总被引:1,自引:0,他引:1  
为了寻求减小气动作用的方法,基于三维非稳态粘性流的雷诺平均Navier—Storkes方程及两方程紊流模型,采用包含移动网格技术的计算流体力学方法,对高速列车进入隧道的气动作用进行了动态数值模拟;计算了2种车型(ICE和新干线300系)、5种车速(200,250,300,350和400km/h)和5种隧道断面尺寸的列车-隧道流场,获得了隧道内压力和列车气动阻力的变化趋势,并分析了列车速度、阻塞比、车头形状和线路状况等因素的影响.研究表明,列车速度和阻塞比对气动作用的影响具有一定规律.  相似文献   

18.
建立高速列车头型气动噪声分析方法有利于了解头型与空气相互作用产生的气动噪声特性及其对车内外的影响.为此,先后建立了两个头型的1∶8缩比三节编组气动噪声仿真模型,并开展气动噪声仿真计算,得到外场测点平均总声压级.通过与风洞试验结果相比较,两者量值相差小于3 d BA,且头型1均小于头型2,验证数值仿真结果.为了实现全尺寸高速列车头型气动噪声数值仿真,提出在三节编组的计算域中截取一部分—子域法.子域法和整车得到头型部位的气动特性一致性间接表明子域法的合理性.利用子域法开展了全尺寸头型1和头型2气动噪声仿真计算,得到头型表面声功率、表面和外场总声压级,可为头型选型和优化提供依据,从而建立了基于数值仿真的全尺寸高速列车头型气动噪声分析方法,解决了以往无法通过风洞试验和数值仿真进行全尺寸高速列车头型气动噪声分析.  相似文献   

19.
为评价计算网格对明线列车空气动力学数值仿真计算结果的影响,基于计算流体力学,研究了计算网格对列车气动特性的不确定性. 首先根据3种不同尺寸的计算网格及其计算结果,提出了计算网格对列车气动力和表面压力不确定性的计算方法;其次以ICE2列车为研究对象,划分了3种不同尺寸的计算网格,数值仿真得到了列车气动力和典型截面的压力;最后研究了该列车头车气动力和典型截面压力的不确定性. 研究结果表明:数值仿真得到的气动侧力系数与试验数据的误差仅为0.31%;车身迎风侧表面压力的不确定性接近于0;车身表面压力不确定性较大的位置主要位于车体底部,其最大不确定度达到1.42;头车侧力系数的不确定度为0.002 6,而头车升力系数的不确定度为0.509 3.   相似文献   

20.
为更深入全面了解高速列车受电弓气动噪声研究现状,阐明高速列车受电弓气动噪声机理与规律,总结了近年来国内外高速列车受电弓气动噪声的研究,概括了中国、日本、德国与法国高速列车受电弓的发展历程,分析了受电弓气动噪声源、辐射气动噪声特性以及高速列车受电弓气动噪声研究方法,探讨了高速列车受电弓气动噪声生成机理与抑制方法,总结了当前研究的主要成果。分析结果表明:受电弓作为列车顶部的重要受流装置,由多个杆件组成,在高速气流中会产生显著的有调噪声,是高速列车环境噪声污染主要来源之一;高速列车受电弓主要气动噪声源分布在弓头、铰链机构、绝缘子、底架等部件的迎风侧位置,研究受电弓气动噪声的手段有实车试验、风洞试验以及数值模拟;增加附属装置可以有效控制气动噪声,如增加导流罩、喷射气流、等离子体驱动器等,但这些方法增加了系统的复杂度;基于仿生学原理改变杆件表面微结构,可以显著抑制受电弓湍流旋涡的生成,从而大幅降低气动噪声;优化杆件截面形状以及空间结构设计,可以减少阻力及湍流旋涡的生成,进而有效控制气动噪声。可见,多种途径可以降低受电弓气动噪声,但工程落地的可行性、气动噪声与气动阻力及弓网接触稳定性的耦合关系,仍...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号