首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
现有的铰接车辆路径跟踪控制方法在模型线性化和预瞄误差过程均产生较大误差,导致跟踪精度降低。针对铰接车辆路径跟踪控制,构建了铰接车辆动力学模型,采用基于状态轨迹的线性化方法补偿动力学误差,提出了考虑路径多点预瞄误差的控制目标,设计了基于动力学模型的模型预测控制器,用以优化铰接点处转向力矩。为验证该方法的有效性,采用Matlab/Simulink和Adams软件构建了联合仿真平台,对控制算法进行了仿真验证。仿真结果表明,本文中设计的控制器可有效提升铰接车辆路径跟踪精度。  相似文献   

2.
为提高智能汽车极限工况下的自动紧急避撞能力,提出了一种联合制动与转向的综合控制方法。首先,建立了包含转向、制动和悬架子系统耦合特性的18自由度统一动力学模型,并对其进行了水平路面上的转向制动仿真。接着,提出了联合制动与转向的自动紧急避撞系统总体框架,其中路径规划选用五次多项式规划算法,纵向采用滑模跟踪控制,侧向采用基于2自由度参考模型的最优四轮转向跟踪控制。最后,参考乘用车双移线极限工况测试国际标准,构建自动紧急避撞驾驶场景,对上述模型在不同车速下的自动紧急转向避撞和联合制动与转向避撞进行了对比仿真。结果表明:当车速较高时,车辆实际轨迹与理想跟踪轨迹存在一定滞后,极限工况下仅通过转向操作难以成功避撞;而联合制动与转向的避撞控制系统可进一步提高车辆极限工况下的自动紧急避撞能力,最大通过车速可由50提高至60 km/h。  相似文献   

3.
针对自主驾驶车辆的转向避撞问题,提出了一种分层避撞控制方法。上层路径规划控制器基于车辆运动学模型,引入人工势场函数,采用障碍物与车辆的相对状态描述车辆碰撞风险。基于模型预测控制理论,构建优化目标函数,规划最优避撞路线,并采用五次多项式拟合局部避撞路径。对于下层路径跟踪控制器,则建立车辆非线性动力学模型,构建基于最优转向盘转角输入的路径跟踪优化函数,实现局部避撞路径跟踪。最后搭建了Carsim/Matlab联合仿真平台,对被控车辆在不同路面、不同车速情况下的避障路径规划和跟踪效果进行了仿真。结果表明:上层控制器能根据障碍物信息实时规划局部避撞路径,下层控制器能控制车辆平滑、稳定地跟踪参考路径,从而实现车辆的主动避撞功能。  相似文献   

4.
为实现车辆稳态转向的理想状态,建立更真实的预瞄-跟踪行为,提出了2种基于稳态转向的路程预瞄转向模型,假设车辆处于稳态转向状态,预测车辆的行驶轨迹,基于预测轨迹的侧向误差最小原则,分别建立了将单点预瞄转化为路程预瞄的理想转向模型和修正转向模型。CarSim/Simulink联合仿真结果表明,2种转向模型均具有较好的路径跟踪精度、适应性和转向平顺性。  相似文献   

5.
基于电压控制的混合动力履带车辆控制策略研究   总被引:1,自引:0,他引:1  
结合车辆结构形式和DC—DC变换器控制方法,在功率跟踪控制策略基础上提出一种基于电压控制的混合动力履带车辆控制策略。并在Simulink/Stateflow环境下对提出的控制策略进行建模,将控制逻辑与整车驱动系统模型联合,得到以加速踏板、制动踏板和转向盘为输入,包含控制策略的混合动力履带车辆模型。在不同工况下进行仿真,仿真结果表明该控制策略可行并可使车辆具有良好的加速性能和转向性能。  相似文献   

6.
为解决高速工况下低附着系数复杂路面上转向和行驶稳定性等难以控制的问题,建立了6自由度整车动力学模型,在传统模型预测控制理论基础上,设计了前轮主动转向控制器,并通过CarSim和MATLAB/Simulink进行联合仿真,在兼顾路径跟踪精度和行驶稳定性的前提下,对控制器参数进行优化,使车辆在中低速下路径跟踪达到最佳状态,在较高车速下加入侧偏角软约束,以保证跟踪精度和行驶稳定性。试验结果表明,提出的控制方法能保证车辆在冰雪路面高速行驶时具备一定的转向精度和行驶稳定性。  相似文献   

7.
为提高智能车辆路径跟踪的鲁棒性,基于模型预测控制原理提出了一种路径跟踪控制方法。该方法对车辆的3自由度非线性动力学模型进行线性化,得到线性时变模型和预测方程,并将包括控制量、控制增量等约束纳入二次规划的求解过程,同时考虑质心侧偏角、路面附着系数等影响操稳特性的约束条件。在Car Sim和MATLAB/Simulink平台上以不同车速进行了双移线工况下的联合仿真,结果显示,该控制器可较好地实现路径跟踪,并保持较好的稳定性。  相似文献   

8.
针对搭载线控转向系统的智能驾驶车辆路径跟踪问题,基于汽车动力学仿真软件分析车辆转向特性,推导出横摆角速度对转向盘转角的稳态增益曲线,并获得了仿真稳态增益与理论稳态增益之间的修正系数,以此搭建单点预瞄模型和变角传动比线控转向系统模型。通过预瞄式横向运动控制与线控转向变角传动比控制相结合的方式,完成智能驾驶车辆路径跟踪控制策略的设计,并与搭载固定角传动比线控转向系统的智能驾驶车辆进行仿真对比验证。仿真结果表明,所设计的路径跟踪控制方法具有更高的跟踪精度和行驶稳定性。  相似文献   

9.
徐兴  汤赵  王峰  陈龙 《中国公路学报》2019,32(12):36-45
为了提高分布式无人车轨迹跟踪的精度,提出了基于自主与差动协调转向控制的轨迹跟踪方法。首先,在车辆三自由度模型基础上,基于模型预测控制(MPC)实时计算前轮转角以控制车辆进行自主转向轨迹跟踪。在此过程中,为了提高自主转向下车辆的轨迹跟踪精度与行驶的稳定性,考虑多种因素,利用经验公式及神经网络控制对MPC的预瞄步数和预瞄步长进行多参数调整,实现预瞄时间的自适应控制。其次,在恒转矩需求的情况下,以轨迹偏差为PID控制器的输入及左右轮毂电机转矩为输出进行差动转向控制,实现了差动转向下的轨迹跟踪控制。然后,通过设置权重系数的方法将自主与差动转向相结合。考虑到车辆横纵向动力学因素,采用模糊控制及经验公式对权重系数进行了调整,从而在提高车辆转向灵活性与轨迹跟踪效果的同时保证车辆行驶的稳定性。CarSim与Simulink联合仿真以及实车试验结果表明:与自主转向轨迹跟踪相比,采用变权重系数的协调控制可以在不同的工况下提高车辆的转向灵活性与轨迹跟踪的精度,轨迹跟踪偏差的均方根值改善率达到了11%。所提出的协调转向控制方法可为分布式驱动车辆转向灵活性的提高及轨迹跟踪精度的改善提供一种新的思路。  相似文献   

10.
为提高基于预瞄理论的路径跟踪控制算法的计算效率与适应性,本文中在预瞄最优曲率模型的基础上,提出了一种依据车辆实际行驶路程获取预瞄点侧向位移的弧长预瞄方法。并在该方法下,推导了预瞄点侧向位移与车辆前轮转角之间的关系,之后通过侧向跟踪闭环系统方框图,建立了路径跟踪的侧向控制模型。最后,在CarSim/Simulink联合仿真环境下,通过建立若干典型仿真工况,对该模型的有效性和人-车-路闭环系统转向盘稳定性影响因素进行了仿真分析。结果表明,该方法在侧向路径跟踪控制方面具有跟踪精度高、计算速度快和适应性好的特点。并且,当闭环系统同时满足期望路径点方向连续和预瞄距离大于临界前视距两个条件时转向盘趋于稳定。  相似文献   

11.
四轮独立转向-独立驱动电动车(4WIS-4WID EV)具有低速机动性强、高速稳定性好的特点,是一种理想的智能车构型。本文中针对4WIS-4WID EV进行了主动避障系统的设计,主要包括避障路径规划和跟踪控制。首先基于车辆运动学模型,提出了采用七次多项式的避障路径规划算法;然后基于简化2自由度车辆动力学模型,设计了模型预测路径跟踪控制器;为提高车辆主动避障过程中的操纵稳定性,路径跟踪控制算法采用四轮转向与直接横摆力矩控制技术。通过不同附着系数路面工况与侧风扰动工况仿真,验证了所设计的主动避障系统具有良好的避障能力和鲁棒性。  相似文献   

12.
针对自动驾驶货车相较于普通乘用车具有较大模型不确定性、执行器偏差以及存在曲率扰动等外部影响因素导致路径跟踪精度不足问题,本文提出一种基于鲁棒模型预测控制(robust model predictive control,RMPC)的分层式控制方法。首先,在转角增量式控制误差模型的基础上,根据实际车辆系统与标称模型之间的偏差,设计鲁棒控制律并构建上层多目标约束RMPC控制器,提高跟踪精度。然后,针对自动驾驶货车不足转向以及定位误差问题,设计下层转角补偿器和基于中值滤波的状态估计器,改善执行响应,提升车辆稳定性。最后,通过TruckSim/Simulink联合仿真和实车试验验证,结果表明:所提出的控制方法能够有效处理模型失配和不确定性扰动,具备良好的鲁棒性和适应性。  相似文献   

13.
建立了某四轮汽车9自由度车辆模型和轮胎动力模型,并提出了一种基于侧向力利用系数的差动制动、主动转向切换控制策略。模拟了汽车以车速24.5m/s行驶时的一个紧急避让情况,研究了无控制模式、差动制动控制模式、联合控制模式下的车辆横摆角速度、质心侧偏角、质心侧向位移的变化。结果表明,所提出的差动制动联合主动转向技术的控制策略可以满足变路面下车辆稳定性控制要求。  相似文献   

14.
分布式驱动无人车能通过差动转向和原有自主转向的共同作用保证车辆的轨迹跟踪。在2自由度车辆动力学模型基础上,基于模型预测控制算法,提出预瞄时间自适应的轨迹跟踪方法,以满足转弯和直行工况的预测要求;考虑分布式驱动无人车构型特点,基于参考横摆角,采用左右两侧驱动轮转矩差动控制,能在保证无人车总体转矩需求不变的情况下实现轨迹跟踪。为综合上述两种方法的优点,提出了利用设置权重的方法对自主转向和差动转向轨迹跟踪进行协调控制,并进行了Matlab与Car Sim的联合仿真和实车实验验证。结果表明,协调控制有效改善了转向的响应速度和灵活性,同时提高了无人车轨迹跟踪的可靠性和准确性。  相似文献   

15.
分布式驱动无人车能通过差动转向和原有自主转向的共同作用保证车辆的轨迹跟踪。在2自由度车辆动力学模型基础上,基于模型预测控制算法,提出预瞄时间自适应的轨迹跟踪方法,以满足转弯和直行工况的预测要求;考虑分布式驱动无人车构型特点,基于参考横摆角,采用左右两侧驱动轮转矩差动控制,能在保证无人车总体转矩需求不变的情况下实现轨迹跟踪。为综合上述两种方法的优点,提出了利用设置权重的方法对自主转向和差动转向轨迹跟踪进行协调控制,并进行了Matlab与Car Sim的联合仿真和实车实验验证。结果表明,协调控制有效改善了转向的响应速度和灵活性,同时提高了无人车轨迹跟踪的可靠性和准确性。  相似文献   

16.
针对无人车路径跟踪过程中跟踪效果与车辆稳定性这一多目标控制问题,基于分层控制理论提出了一种分布式驱动无人车辆路径跟踪与稳定性协调控制策略。建立了车辆动力学模型和路径跟踪模型,利用滑模控制方法设计了上层控制器,旨在减小路径跟踪过程中的航向偏差和横向偏差的同时确保车辆自身的稳定性。在下层控制器中,设计了一种四轮轮胎力优化分配方法,根据上层控制器需求,结合车辆横摆与侧倾稳定性情况,实现四轮轮胎力的定向控制分配。基于CarSim和Simulink搭建了联合仿真模型并进行仿真实验,结果表明,提出的协调控制策略能够有效地控制车辆路径跟踪中的航向偏差和横向偏差,同时确保车辆的侧倾与横向稳定性。  相似文献   

17.
针对四轮独立驱动电动汽车具有结构参数、外部干扰不确定性与非线性和过驱动等特征,提出了一种分层控制框架,以实现前轮转向与直接横摆力矩控制系统协同的车辆路径跟踪控制。首先,基于路径跟踪运动学模型,将车辆的路径跟踪问题转化为约束跟随问题;其次,设计了基于约束跟随的自适应鲁棒上层控制算法,该方法可以有效处理由模型不确定性和外部干扰引起的失配问题,并保证闭环系统的一致有界性和一致最终有界性;最后,设计了一种基于二次规划的下层分配算法满足所需的直接横摆力矩,并在Simulink-Carsim平台进行联合仿真。通过不同工况的仿真结果表明,所设计的自适应鲁棒控制算法具有良好的路径跟踪精度和鲁棒性。  相似文献   

18.
为解决智能车辆在车道变换过程中的路径规划和路径跟踪问题,首先,利用梯形加速度法设计了车道变换虚拟理想轨迹,该路径规划方法的适应性取决于车道变换时间、横向加速度及变化率等关键变量的约束条件,因而对各关键变量之间的数学关系进行了定量计算,并绘制了不同工况下的车道变换虚拟理想轨迹,用于分析各关键变量对路径规划的影响;其次,建立了线性离散的车辆动力学预测模型,综合分析了车辆模型的控制输入、状态变量以及道路结构参数等约束条件,构建了多约束模型预测控制(MMPC)系统用于车道变换路径跟踪,并基于Hildreth二次规划算法对其目标函数进行了求解,获得前轮转向角控制量,从而保证智能车辆在车道变换过程中的路径跟踪性能及操纵稳定性能;最后,利用MATLAB和Carsim软件对提出的多约束模型预测控制系统进行联合仿真,并构建单约束模型预测控制(SMPC)系统与其进行性能比较,分别对车道变换时间为3 s和6 s时的车道变换性能进行比较分析。结果表明:当车道变换时间为6 s时,2种控制系统都能较好地实现车道变换功能;当车道变换时间为3 s时,与SMPC控制系统相比较,MMPC控制系统能够在有效跟踪期望行驶路径的同时改善车辆的操纵稳定性,从而提高车辆在路径跟踪过程中的主动安全性能。  相似文献   

19.
在设计车道偏离防止系统时,为充分利用差动制动控制和主动转向控制,同时兼顾车辆行驶的安全性与驾驶员驾驶自由,提出了一种双级预警的利用主动转向与差动制动协调控制的车道偏离防止策略。当车辆危险程度较低时仅采用差动制动控制,保证驾驶员对转向盘的控制;当车辆危险程度较高时,采用预测控制实现主动转向与差动制动系统的协调控制,使车辆能快速地回到车道中心线。选取跨道时间来设计车辆偏离预警算法,并根据车辆转向系统的响应分别设定预警阈值。为保证车辆的稳定性,采用模型预测控制算法添加合理的约束,设计差动制动控制和主动转向与差动制动协调控制器。仿真与硬件在环试验结果表明,所设计的基于主动转向与差动制动协调的车道偏离防止控制策略在保证车辆行驶安全性的前提下给予了驾驶员充分的驾驶自由。  相似文献   

20.
为实现不同速度工况下的车辆稳定转向和路径跟踪,提出了一种机器人驾驶车辆横向自适应反演切换控制方法。构建了7自由度车辆横纵向动力学模型,并基于等效转动惯量的概念,建立了驾驶机器人转向机械手动力学模型。定义了转向机械手每个子系统的虚拟控制量、模糊隶属度函数和Lyapunov函数,设计了模糊自适应反演控制器和状态切换器。本文提出方法与其他控制方法的仿真和人类驾驶车辆的试验验证了所提出方法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号