首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
沥青混凝土铺装桥面产生的高温会在箱梁内引起温差分布,导致温度变形,从而产生温度应力。目前,我国规范未对高温沥青摊铺引起的桥梁结构的温度场分布作出规定,故由其引起的温度应力在设计中尚未考虑。本文在借鉴国内外箱梁温度应力理论与方法的基础上,利用了ANSYS软件建立预应力钢筋混凝土连续梁桥三维实体模型,分别计算日照温度场、高温沥青摊铺温度场和设计活荷载下桥梁的应力状态。通过对比分析,研究了在实桥模型下,日照温度场和高温沥青摊铺温度场所引起的桥梁应力异同。  相似文献   

2.
为了研究高温沥青混合料摊铺时正交异性钢桥面板在温度影响下的结构受力响应,基于瞬态温度场理论和热力学边界假设条件,确定数值模拟所需的各项热力学参数,以及通过试验-数值模拟方法得到了界面热阻参数。采用生死单元法建立了正交异性钢桥面板在高温沥青混合料摊铺全过程的时变温度场有限元模型,并结合某长江大桥在浇注式沥青混凝土摊铺过程中的实测数据,验证了该模拟方法的可靠性。基于该模型分析了高温摊铺下正交异性钢桥面板温度场时空变化规律。结果表明,在开始摊铺浇注式沥青混凝土30 min左右,摊铺区域处跨中钢桥面板上最高温度达到95℃,在结构分析中应考虑温度应力;位于摊铺区域的钢桥面板主要承受压应力,最大压应力温度增量139 MPa,位于非摊铺区的钢桥面板主要受拉应力,最大拉应力温度增量70 MPa;顶板温度的横向影响范围在摊铺边缘左右各约1 m,横隔板处顶板的纵向温度较其他截面略低6~7℃。该分析结果可为设计人员在计算摊铺施工时提供不利影响分析依据,并为施工人员在摊铺过程中进行施工监测提供参考。  相似文献   

3.
高等级公路桥已广泛采用沥青混凝土铺装,而沥青混凝土摊铺时的温度往往高达150℃左右,如此高的温度必然会在桥梁结构中引起不利的温度场.沥青摊铺对钢筋混凝土箱梁桥温度场的影响是多方面因素共同作用的结果,通过对诸如梁体初始温度、沥青下料温度及摊铺层厚度等影响因素的数值分析,提出了考虑各种影响因素的温度梯度分布模式,为钢筋混凝土箱梁桥在沥青摊铺作用下的温度场和温度效应的分析计算提供了一种简化的计算公式.  相似文献   

4.
混凝土箱梁横、竖向温度应力分析   总被引:1,自引:0,他引:1  
该文通过弹性力学中平面应力问题的求解方法得出各种温度模式下混凝土箱梁横向、竖向温度自应力公式;按求解框架约束温差应力的方法得到混凝土箱梁横向、竖向温度约束应力公式,并对影响其大小的因素箱梁高度、宽度,顶板、底板、腹板厚度作了分析;得到顶板横向、腹板竖向温度应力最不利温度模式组合方式。  相似文献   

5.
预应力混凝土连续箱梁桥的顶板结构受力复杂,导致病害突出。该文以某连续箱梁桥为背景,采用有限元法和解析法分别分析了预应力混凝土箱梁顶板的横向应力及主应力分布,讨论了顶板纵向裂缝产生原因及其影响因素,发现:①施工时合理设置箱梁桥面板横向预应力钢束张拉锚固程序可以改善箱梁顶板受力性能;②采用平面梁单元模拟顶板受力可以在简化计算的基础上取得和空间分析比较吻合的结果;③合理确定腹板尺寸和底板厚度,能够调整顶板横向应力的分布。  相似文献   

6.
沥青混凝土高温摊铺所引起的钢桥正交异性板结构温度效应备受关注,为研究高温摊铺引发的钢梁支座体系温度效应,依托九江长江大桥的公路桥加固改造工程,采用生死单元法模拟了钢桥面沥青混凝土动态摊铺施工过程,建立了密支座钢梁摊铺温度场模型,结合现场温度监测数据确立了高温摊铺下钢梁节段的温度场时空分布规律,在此基础上,仿真模拟了不同工况下钢梁支座体系的力学响应,并剖析了高温摊铺下支座体系温度效应的影响因素。研究结果表明:沥青混凝土高温摊铺下钢桥面板的温度先急剧上升,摊铺完成约12 min后逐渐下降直至稳定,夏季热拌环氧沥青混凝土(摊铺温度为185℃)摊铺下钢桥面板的最高温度达到96.1℃,钢梁节段的竖向最大温差达到55℃;高温摊铺会导致钢梁支座体系产生较大的支反力,摊铺宽度增大,支反力显著提高,当摊铺宽度超过5 m时,支座最大竖向拉力将超出其承载能力,当摊铺宽度超过8 m时,最大横向支反力将超出支座承载能力;对于纵向有连续固定支座的钢梁节段,纵向连续固定支座数目对竖向支反力和横向支反力的影响较小,但高温摊铺时会产生远超支座承载能力的纵向支反力,支座结构存在安全隐患。研究可为类似钢梁支座体系的沥青混凝土摊铺施工方案设计和支座处置提供理论支撑。  相似文献   

7.
为研究50 mm厚EA10环氧沥青混凝土铺装层温度对正交异性钢桥面板U肋与顶板构造疲劳致损效应的影响,开展带沥青混凝土铺装层的正交异性钢桥面板足尺节段模型拟静力循环加载试验。分析不同铺装层温度下正交异性钢桥面板顶板的横向应变、挠度以及U肋与顶板构造的局部热点应力响应,在此基础上,对不同铺装层温度下U肋与顶板外侧焊趾疲劳损伤进行研究。结果表明:常温(25℃)条件下,采用沥青混凝土铺装层可降低钢桥面板顶板35.2%的横向应力和10.3%的局部挠度,以及U肋与顶板双面焊构造外侧顶板焊趾区域的应力幅值和疲劳损伤;随着沥青混凝土铺装层温度升高,顶板横向应力、挠度及U肋与顶板双面焊构造外侧顶板焊趾区域的应力幅值、疲劳损伤显著增大,高温(60℃)条件下该区域疲劳损伤度增幅可达41.5%。  相似文献   

8.
温度应力对既有混凝土连续箱梁桥开裂的影响分析   总被引:5,自引:2,他引:5  
采用三维空间实体单元,在分析连续箱梁桥温度应力分布规律的基础上,研究了温度梯度、箱梁的肋板与顶板刚度比以及跨径比等参数变化对温度应力的影响,并分析比较了按《公路桥涵设计通用规范》JTJ021-89版和JTG D60-2004版计算的温度应力。结果表明,在JTG D60-2004版温度梯度荷载作用下,箱梁顶板上下缘产生较大的横向拉应力,顶底板上下缘产生较大的纵向拉应力,产生较大温度应力处与实桥出现裂缝的部位基本吻合,从中揭示了温度应力对既有混凝土连续箱梁桥开裂的影响。  相似文献   

9.
混凝土薄壁箱梁横向温度应力分析   总被引:1,自引:0,他引:1  
基于能量变分法原理对混凝土薄壁箱梁桥在梯度温度作用下的箱梁横向效应进行分析,并推导了一般公式.计算结果表明在指数函数形式的梯度温度作用下,本文方法计算得到的横向拉应力值与ANSYS计算值相当,而常规方法的计算值要小于本文方法.此外还对箱梁各截面尺寸变化对其顶板下缘横向温度应力的影响进行分析,从中可以看出,箱梁梁高的变化对其横向应力的影响较大.  相似文献   

10.
沥青高温摊铺时钢筋混凝土箱梁的温度分布试验   总被引:1,自引:0,他引:1  
对沥青高温摊铺给钢筋混凝土箱梁造成的影响及其引起的截面温差分布规律进行了研究。在建设中的钢筋混凝土连续梁桥箱梁腹板内预先埋设了温度传感器,在沥青摊铺施工作业时对测点温度进行了实时跟踪观测,采集了大量的温度数据,分析了沥青摊铺引起的箱梁内测点温度分布状况,并对测试断面的温差分布规律进行了总结,拟合了测试桥梁的沥青摊铺温差分布曲线。结果表明:沥青高温摊铺的影响深度在50 cm以内,且温度梯度值较大,对结构会造成不利影响。  相似文献   

11.
为探讨桥梁横向拼接拓宽给既有预应力混凝土箱梁桥箱梁桥面板可能带来的结构病害,利用有限元方法分析新旧箱梁之间产生的相互作用以及对既有箱梁结构应力状态的影响,研究既有箱梁顶板和翼缘板在拓宽后可能产生的结构病害及其产生的机理。结构分析中考虑的主要参数包括新建混凝土桥梁的收缩及徐变效应、新旧箱梁之间的不均匀沉降差、温度梯度以及车辆活载作用。研究结果表明:拓宽后既有箱梁的部分顶板和靠近新建箱梁的大部分内侧翼缘板顶面普遍处于较大的拉应力状态,其中新建桥梁混凝土收缩和徐变效应、新旧箱梁之间的不均匀沉降差是主要原因,将很可能造成翼缘板上翼缘大部分区域开裂,设计时需采取相应加固措施,并建议了箱梁桥面板横向加固方法;拓宽后新旧箱梁整体结构在梁端截面将发生较大的横向偏移变形,极有可能挤压侧向抗震挡块,造成结构损害,因此有必要限制需拓宽的混凝土连续箱梁桥总长;应重视以往桥梁拓宽设计时忽视的箱梁桥面板横向应力状态变化及其可能带来的结构病害,设计者应充分注意桥梁拓宽所带来的不利影响。  相似文献   

12.
通过对某波腹板钢箱梁桥进行模型计算分析,得到不同日照工况下箱梁横向应力变化规律,认为日照荷载容易在箱梁顶板产生较大的拉应力,导致顶板混凝土开裂,并对日照荷载对波腹板钢箱梁剪力滞后影响进行了分析。  相似文献   

13.
大连滨海大道西延伸线张柏2号高架桥主桥为(50+96+192+70)m S形曲线钢箱梁斜拉桥,桥面铺装层采用热浇注式沥青混凝土摊铺方法施工,摊铺过程中出现了结构位移和应力较大等异常情况。为了解异常情况产生的原因,采用ANSYS软件建立全桥有限元模型(钢箱梁采用壳单元模拟),分析摊铺过程中温度引起的桥塔纵、横向位移,以及主梁纵向、竖向位移和纵向应力。结果表明:摊铺温度导致结构产生较大的位移和应力,主梁和桥塔纵向位移均达22.8 cm,主梁最大竖向位移为25.9 cm,钢箱梁最大拉应力为143 MPa;摊铺过程中,结构纵、横向均存在较大的位移差和应力差,导致变形不协调和局部应力过大;结构位移、应力的计算值与实测值基本一致。该类桥梁施工时应调整摊铺工艺,降低摊铺温度效应。  相似文献   

14.
为研究混凝土箱梁腹板横向温度梯度的特征以及横向温度梯度对桥梁结构应力的影响,以某大桥连续刚构辅桥为背景,对混凝土箱梁腹板横向温度效应进行研究。该桥为主跨268m的连续刚构桥,南北走向,分幅布置,墩顶处混凝土箱梁腹板厚度达到1m。基于该桥1年的实测温度,首先使用最小二乘法拟合实测温度,得到箱梁腹板横向正、负温度梯度;然后通过有限元方法计算分析实测温度梯度中考虑与不考虑腹板横向温度梯度时的温度效应。研究结果表明:腹板横向正温度梯度可只考虑单侧腹板,腹板横向负温度梯度则考虑腹板两侧对称布置;考虑腹板横向正温度梯度时,底板上缘拉应力增值较大;考虑腹板横向负温度梯度时,腹板外侧纵向应力由压应力变为拉应力,应力明显增大,混凝土箱梁腹板的横向温度效应在桥梁设计中不可忽略。  相似文献   

15.
为研究混凝土箱梁腹板横向温度梯度的特征以及横向温度梯度对桥梁结构应力的影响,以某大桥连续刚构辅桥为背景,对混凝土箱梁腹板横向温度效应进行研究。该桥为主跨268m的连续刚构桥,南北走向,分幅布置,墩顶处混凝土箱梁腹板厚度达到1m。基于该桥1年的实测温度,首先使用最小二乘法拟合实测温度,得到箱梁腹板横向正、负温度梯度;然后通过有限元方法计算分析实测温度梯度中考虑与不考虑腹板横向温度梯度时的温度效应。研究结果表明:腹板横向正温度梯度可只考虑单侧腹板,腹板横向负温度梯度则考虑腹板两侧对称布置;考虑腹板横向正温度梯度时,底板上缘拉应力增值较大;考虑腹板横向负温度梯度时,腹板外侧纵向应力由压应力变为拉应力,应力明显增大,混凝土箱梁腹板的横向温度效应在桥梁设计中不可忽略。  相似文献   

16.
现行的沥青路面施工无法避免横向冷接缝问题。横向冷接缝处治结果的好坏直接关系到路面的施工质量,同时还可以反映出施工队伍的管理水平与施工水平。在进行每一层沥青混凝土施工时,一旦出现不能连续摊铺碾压成型中途停止摊铺的情况,沥青混凝土路面就会出现横向冷接缝。再继续施工时,需从处理好的横向断面处接着摊铺碾压,此断面位置即为横向冷接缝。  相似文献   

17.
方金  范亮  杨未蓬 《公路》2022,67(2):130-137
为探究施工工艺参数对高温浇筑过程中钢桥面板温度效应的影响,基于瞬态温度场传热理论和热力学边界条件假设,采用生死单元法建立钢桥面板在浇筑式高温沥青混合料摊铺过程中的时空温度场、应力场、变形场模型,研究工艺参数变化对钢桥面板温度效应的影响。研究结果表明:摊铺区顶板在距离摊铺开始35 min达到峰值温度92℃,温度效应影响大约是左右宽度1 m范围;单次摊铺宽度和摊铺速度分别对钢桥面板纵向最大拉、压应力影响显著,峰值应力分别为79.36 MPa和-136.07 MPa,摊铺温度主要影响摊铺区顶板纵向压应力和横隔板横向拉应力;钢箱梁变形主要受单次摊铺宽度的影响,单次摊铺宽度7.5 m, 24 m节段钢箱梁上拱2.12 cm,纵向最大伸长量为1.72 cm。因此,可通过适当减小单次摊铺宽度、降低摊铺温度和增大摊铺速度方式降低温度效应的影响。  相似文献   

18.
为探明大跨度混凝土箱梁桥施工及成桥阶段的温度场及温度效应,以某实际箱梁桥为研究对象,基于现场监测的温度数据,拟合得到日照作用下混凝土箱梁的竖向温度梯度模式,并在此基础上,建立桥梁各阶段的温度效应结构计算模型,重点研究了箱梁桥在现场监测及各国规范规定的温度梯度模式下的温度应力及竖向挠度分布规律,分析了现场监测得到的最不利竖向温差模式下混凝土箱梁截面的横向及竖向温度应力分布规律。研究结果表明:1)中国《铁路桥涵混凝土结构设计规范》(TB 10092—2017)规定的温度梯度模式的计算结果与依托工程桥梁现场监测结果一致性最好,英国桥梁规范接近;2)混凝土箱梁的顶板和底板主要承受横向温度应力,腹板主要承受竖向温度应力。  相似文献   

19.
《公路》2015,(6)
现有不会出现拉应力的全预应力混凝土箱形梁的某些局部位置,经常产生不少严重的裂缝;针对这一现象,以我国桥规中温度梯度为基础,通过有限元软件Midas FEA模拟连续刚构桥0号块温度场的不同程度改良,对比仿真分析箱体结构在升降温条件下,纵、横向温度应力分布规律及其改良幅度;并研究了温度梯度不同改良程度下,箱梁顶板温度应力沿顶板高度的分布情况。得出结论,当箱梁内外温差由规范的14℃改良为10℃与5℃时,温度应力改良幅度为分别为原来的28%与64%左右,改良幅度较明显;箱体结构的温度主应力主要分布在表层20cm内,为表层应力。  相似文献   

20.
T型梁桥腹板竖向裂缝是该类桥梁的典型病害,温度效应是引起裂缝产生的重要因素之一。为研究不同工况下T型梁桥的温度效应,选取梁体浇筑水化热、桥面沥青摊铺、日照温差3种工况,采用ADINA有限元软件进行实体模拟分析。结果表明:考虑混凝土时变效应时,T梁浇筑过程中水化热效应对结构影响较小; T型梁桥桥面沥青摊铺过程对T梁结构影响较大,T梁腹板由于沥青摊铺过程产生的温度梯度而产生较大的拉应力,约4h时温度应力达到峰值,可达3. 8MPa,其量值不可忽视,应在设计验算过程中予以考虑;在日照正温差作用下,T梁腹板将产生较大拉应力,对腹板受力产生不利影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号