首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Circular motion test data and uncertainty analysis results of investigations of the hydrodynamic characteristics of ship maneuvering are presented. The model ships used were a container ship and two tankers, and the measured items were the surge and sway forces, yaw moment, propeller thrust, rudder normal and tangential forces, pitch and roll angles, and heave. The test parameters were the oblique angle and yaw rate for the conditions of a hull with a rudder and propeller in which the rudder angle was set to zero and the propeller speed was set to the model self-propulsion conditions. Carriage data showing the accuracy of the towing conditions in the circular motion test are also presented. It was confirmed that the uncertainties in the hydrodynamic forces such as the surge and sway forces, yaw moment, rudder tangential and normal forces, and propeller thrust were fairly small. The reported uncertainty analysis results of the circular motion test data may be beneficial in validating data quality and in discussing reliability for simulation of ship maneuvering performance.  相似文献   

2.
In the present study, numerical simulation of the berthing maneuver of a ship in the prescribed translational motion is performed. The transient viscous flow and hydrodynamic forces on the hull are calculated by solving the unsteady Reynolds-Averaged Navier–Stokes equations in overset grid system, and the free surface is captured using volume-of-fluid (VOF) approach. The present numerical results have been compared with previous computational results by Toda and available experimental data respectively. Since the effects of the quaywall and free surface are taken into consideration in the present study, it is found that the agreement is significantly better than that resulting from Toda’s 3D CFD based approach. Then the effects of various standoff distances between the ship and quaywall on the lateral forces are investigated. Meanwhile, the detailed transient flow features around the berthing ship are obtained, which are helpful to understand the interactional effects between the ship and quaywall. The present results may provide helpful guidance for vessels’ safe maneuvering in berthing motion and the design of fender system in the quay.  相似文献   

3.
To estimate the maneuvering ability of a ship, an accurate estimation of the hydrodynamic forces and moment acting on the ship's hull is indispensable. For the purpose of developing a numerical method of computing the viscous flow field around a hull and evaluating its validity, the hydrodynamic pressure on the hull and the velocity field were measured. Two full ship models with different hull forms in the aft part were used for the experiment. From the results of pressure measurements, the distribution of hydrodynamic lateral forces was obtained. The simulation method is a numerical solution of the Navier-Stokes equation based on a finitevolume method and applied to the maneuvering motion. The measured and computed results agree qualitatively well, and the method is a valuable tool for estimating the maneuvering ability of a ship. The typical characteristics of the flow field in the steady turning condition are revealed by the numerical simulation, and the mechanism of the relations between hull form, flow field, and hydrodynamic forces are clarified.Translation and combination of articles that appeared in the Journal of the Society of Naval Architects of Japan, vols. 176, 177, 179 (1994–1996): The original article won the SNAJ prize, which is awarded annually to the best papers selected from the SNAJ Journal, JMST, or other quality journals in the field of naval architecture and ocean engineering.This work was conducted as part of the joint SR221 project supported by JSRA (Shipbuilding Research Association of Japan). The authors express their sincere gratitude to the persons concerned, and especially to M. Kanai, S. Eguchi, S. Usami, K. Tatsumi, and T. Kawamura.  相似文献   

4.
基于B样条的三维船体水动力数值计算   总被引:1,自引:1,他引:0  
本文采用基于B样条的一种新的数值方法计算三维船体水动力,用B样条函数表达三维船体表面的几何形状以及流场中未知物理量的分布,为了验证该数值方法的可行性和精确度首先对处于无限流体域中的圆球体绕流问题进行了计算;其次计算了由ITTC所推荐的Wigley船型的兴波阻力以及以一攻角斜航时的操纵水动力;最后在一些假设下对两船作平行航行时的干扰水动力作了相应计算工作。数值计算结果与其它试验或理论结果在定量或定性上吻合良好。  相似文献   

5.
船艇水动力的计算方法目前主要有模型实验法、理论经验估算法和计算机模拟法.为了更好地预报船艇水动力性能,运用不同方法对2种典型船艇在不同漂角下运动时横向力进行计算,并对各自结果进行了对比分析,得出各种计算方法的优缺点.研究表明,流体计算软件(Fluent)精度较高,计算速度快,能解决人脑有时不能解决的问题.同时,Fluent计算软件为船艇水动力性能的预报等研究提供良好的方法和有益的探讨.  相似文献   

6.
Part 1 of this two-part paper presents the verification and validation results of forces and moment coefficients, hydrodynamic derivatives, and reconstructions of forces and moment coefficients from resultant hydrodynamic derivatives for a surface combatant Model 5415 bare hull under static and dynamic planar motion mechanism simulations. Unsteady Reynolds averaged Navier–Stokes (URANS) computations are carried out by a general purpose URANS/detached eddy simulation research code CFDShip-Iowa Ver. 4. The objective of this research is to investigate the capability of the code in regards to the computational fluid dynamics based maneuvering prediction method. In the current study, the ship is subjected to static drift, steady turn, pure sway, pure yaw, and combined yaw and drift motions at Froude number 0.28. The results are analyzed in view of: (1) the verification for iterative, grid, and time-step convergence along with assessment of overall numerical uncertainty; and (2) validations for forces and moment coefficients, hydrodynamic derivatives, and reconstruction of forces and moment coefficients from resultant hydrodynamic derivatives together with the available experimental data. Part 2 provides the validation for flow features with the experimental data as well as investigations for flow physics, e.g., flow separation, three dimensional vortical structure, and reconstructed local flows.  相似文献   

7.
Ship maneuvering in waves includes the performance of ship resistance, seakeeping, propulsion, and maneuverability. It is a complex hydrodynamic problem with the interaction of many factors. With the purpose of directly predicting the behavior of ship maneuvering in waves, a CFD solver named naoe-FOAM-SJTU is developed by the Computational Marine Hydrodynamics Lab(CMHL) in Shanghai Jiao Tong University. The solver is based on open source platform OpenFOAM and has introduced dynamic overset grid technology to handle complex ship hull-propeller-rudder motion system. Maneuvering control module based on feedback control mechanism is also developed to accurately simulate corresponding motion behavior of free running ship maneuver. Inlet boundary wavemaker and relaxation zone technique is used to generate desired waves. Based on the developed modules, unsteady Reynolds-averaged Navier-Stokes(RANS) computations are carried out for several validation cases of free running ship maneuver in waves including zigzag, turning circle, and course keeping maneuvers. The simulation results are compared with available benchmark data. Ship motions, trajectories, and other maneuvering parameters are consistent with available experimental data, which indicate that the present solver can be suitable and reliable in predicting the performance of ship maneuvering in waves. Flow visualizations, such as free surface elevation, wake flow, vortical structures, are presented to explain the hydrodynamic performance of ship maneuvering in waves. Large flow separation can be observed around propellers and rudders. It is concluded that RANS approach is not accurate enough for predicting ship maneuvering in waves with large flow separations and detached eddy simulation(DES) or large eddy simulation(LES) computations are required to improve the prediction accuracy.  相似文献   

8.
The maneuvering characteristics of a large container ship with twin propellers and twin rudders were investigated using the horizontal planar motion mechanism (HPMM) test and computer simulation. A mathematical model for maneuvering motion with four degrees of freedom (DOF) for twin-propeller and twin-rudder systems was developed and included the effects of roll motion. To obtain the roll-coupling hydrodynamic coefficients of a container ship, a four-DOF HPMM system having a roll motion mechanism and a roll moment measurement system was used. At the full load condition, HPMM tests were carried out for two different 12 000-TEU container ship models, one with twin propellers and the other with a single propeller. Using the hydrodynamic coefficients obtained from the tests, computer simulations were carried out. Simulation results for the container ship with twin propellers and twin rudders were compared with the results for the container ship with a single propeller and single rudder.  相似文献   

9.
潜艇操纵性水动力数值计算中湍流模式的比较与运用   总被引:2,自引:0,他引:2  
湍流模式的选取对潜艇操纵性水动力数值计算精度有着重要影响,采用六种湍流模式计算了SUBOFF主艇体及主艇体加指挥室围壳两种模型在一定漂角范围内的潜艇操纵性水动力,并与试验值进行了比较,结果表明SSTk-ω模型更为适合潜艇操纵性水动力计算。在此基础上对SUBOFF全附体模型在一定漂角和攻角范围内的艇体水动力进行预报计算,并对该计算方法应用于潜艇操纵性水动力预报计算的计算精度与适用范围进行了探讨。  相似文献   

10.
This paper introduces a new method for the prediction of ship maneuvering capabilities. The new method is added to a nonlinear six-degrees-of-freedom ship motion model named the digital, self-consistent ship experimental laboratory (DiSSEL). Based on the first principles of physics, when the ship is steered, the additional surge and sway forces and the yaw moment from the deflected rudder are computed. The rudder forces and moments are computed using rudder parameters such as the rudder area and the local flow velocity at the rudder, which includes contributions from the ship velocity and the propeller slipstream. The rudder forces and moments are added to the forces and moments on the hull, which are used to predict the motion of the ship in DiSSEL. The resulting motions of the ship influence the inflow into the rudder and thereby influence the force and moment on the rudder at each time step. The roll moment and resulting heel angle on the ship as it maneuvers are also predicted. Calm water turning circle predictions are presented and correlated with model test data for NSWCCD model 5514, a pre-contract DDG-51 hull form. Good correlations are shown for both the turning circle track and the heel angle of the model during the turn. The prediction for a ship maneuvering in incident waves will be presented in Part 2. DiSSEL can be applied for any arbitrary hull geometry. No empirical parameterization is used, except for the influence of the propeller slipstream on the rudder, which is included using a flow acceleration factor.  相似文献   

11.
This paper evaluates various computational methods used to compute propeller performance, hydrodynamic side force and bending moment applied to an azimuth propulsor propeller shaft in oblique inflow. The two non-viscous models used are the BEM method and the blade element momentum theory (BEMT). RANS calculations are used to compute the loads on the propeller and the nominal wake velocity from the thruster body to be used in the BEMT model. The effect of the ship hull is also considered in the calculation by implementing the measured nominal wake of a ship hull at different propeller azimuthal positions. All the models are compared and validated against the experimental results, and the discussions are presented.  相似文献   

12.
13.
A new computational fluid dynamics simulation method has been developed for the unsteady motion of a ship advancing in waves. The objective is to evaluate the added resistance and predict the performance of a ship in waves. In this study, a finite volume method, in the framework of a boundary-fitted grid system, is employed. The motion of the ship is solved with six degrees of freedom by using the hydrodynamic forces and moments obtained from the solution of the simulation method. The marker–density–function method is employed to calculate the nonlinear free surface. This method is applied to the coupled motion problem of heaving and pitching. Received for publication on Nov. 15, 1999; accepted on Nov. 18, 1999  相似文献   

14.
[目的]为了兼顾船舶操纵运动预报的成本与精度,基于数值计算方法,结合水动力导数敏感度分析,提出一种船舶操纵运动预报方法.[方法]首先,求解RANS方程,应用流体体积(VOF)法捕捉自由液面,采用动态网格方法对DTMB 5415船型进行约束运动的数值计算,并将回归得到的线性水动力导数与试验值进行对比,验证数值方案的有效性...  相似文献   

15.
本文提出了一个预报船体在波浪中大幅运动时非线性水动压力场的二维时域理论。船体扰动势用时域自由面格林函数和在入射波下的瞬时湿表面上的分布源求解;与非线性水动压力场相匹配的船体运动用差分法求得。为提高计算效率和避免数值过程发散,采用了改进的数值模型和方案。通过线性理论计算与模型试验结果的比较,指出了线性切片理论在预报水动压力场时的不足,水动压力与波高的非线性关系及正负水动压力沿船体表面的分布在Wigley船的计算比较中得到了说明。初步计算表明,该理论的实用化发展前景是令有鼓舞的。相应的计算机程序可在PC机上运行。  相似文献   

16.
In this paper, Neural Networks(NNs) are used in the modeling of ship maneuvering motion. A nonlinear response model and a linear hydrodynamic model of ship maneuvering motion are also investigated. The maneuverability indices and linear non-dimensional hydrodynamic derivatives in the models are identified by using two-layer feed forward NNs. The stability of parametric estimation is confirmed. Then, the ship maneuvering motion is predicted based on the obtained models. A comparison between the predicted results and the model test results demonstrates the validity of the proposed modeling method.  相似文献   

17.
In this paper, Neural Networks (NNs) are used in the modeling of ship maneuvering motion. A nonlinear response model and a linear hydrodynamic model of ship maneuvering motion are also investigated. The maneuverability indices and linear non-dimensional hydrodynamic derivatives in the models are identified by using two-layer feed forward NNs. The stability of parametric estimation is confirmed. Then, the ship maneuvering motion is predicted based on the obtained models. A comparison between the predicted results and the model test results demonstrates the validity of the proposed modeling method.  相似文献   

18.
波浪中载液船舶运动激励舱内液体的晃荡,舱内液体晃荡产生的冲击力同时作用在舱壁上,进而影响船舶的运动姿态。波浪中船体水动力和时延函数是在势流理论范畴下采用切片法和脉冲响应函数方法计算获得的,液舱内液体非线性晃荡是基于粘性流理论实时计算模拟,两者耦合建立了波浪中载液船舶与液舱流体晃荡耦合的运动方程。论文基于开源CFD开发平台OpenFOAM,自主开发实现了船体运动与液舱晃荡的耦合计算程序,并进行了相应的数值模拟计算和验证工作。该方法完整地考虑了波浪、船体和液舱晃荡之间的耦合作用,并结合船体内外流场特点分别采用了势流和粘性流理论,具有较高的计算效率。通过数值模拟计算和模型实验研究表明,数值模拟计算能够清晰显现出液舱晃荡对船体全局运动影响,船体运动计算结果与模型实验结果吻合良好。  相似文献   

19.
李迎华  吴宝山  张华 《船舶力学》2010,14(10):1100-1108
针对水下低速航行体非定常操纵运动中雷诺数及水动力系数随时间变化这一特点,文章采用基于动态网格技术的CFD数值方法对其进行运动模拟.通过对传统动态混合网格模型进行发展,提出了一种改进的动态混合网格模型,以此建立了非定常操纵运动数值预报方法.为验证所建立的数值预报方法对水下低速航行体操纵运动水动力的预报精度,并以带攻角均匀直航的滑行状态为研究对象,应用动网格技术对一典型水下低速航行体缩比模型主体及带附体的水动力进行了计算,结果与风洞模型试验结果吻合较好;文中进而将其应用于一水下滑翔机自航模非定常运动的预报,结果与试验符合较好,初步验证了动网格技术的应用能力和所建立的预报方法的有效性.文中的工作可以为水下航行体及其自航模非定常操纵运动的数值模拟提供基础.  相似文献   

20.
为提高拖轮操纵模拟器的行为真实感,运用操纵性理论和分离型建模思想,建立全回转拖轮适用于四象限全工况操纵运动的数学模型.通过处理导管桨JD75系列和四象限螺旋桨Nordstrom系列试验图谱后,提出了导管桨四象限推力模型,同时提出了一种适用于全速域的拖轮船体水动力模型.搭建拖轮运动模拟平台,开展一系列操纵性仿真试验,包括速度试航试验、螺线试验、Z形试验、回转试验及停船试验.将仿真数据与Force Techno-logy公司提供的试验数据进行比较分析,一致性良好,表明该模型精度可满足航海上仿真的需要.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号