首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
为提高夜间行车的安全性,提出了一种基于单目视觉的夜间前方车辆检测方法。该方法利用最大类间方差法自动确定阈值,从背景中抽取出前车尾灯,并根据HSV颜色空间的颜色阈值剔除非尾灯目标,利用Kalman滤波方法将图像分为跟踪区域和检测区域,在两个区域内分别进行尾灯配对,根据尾灯对之间特征相似性的比较,剔除误检的车辆;跟踪区域中漏检的车辆,根据前一帧检测的车辆位置和正确抽取的尾灯来估计,以实现车辆检测。实验结果表明,该算法能准确检测夜间前方车辆,有效降低漏检率和误检率。  相似文献   

2.
为提高夜间行车的安全性,提出了一种基于单目视觉的夜间前方车辆检测方法。该方法利用最大类间方差法自动确定阈值,从背景中抽取出前车尾灯,并根据HSV颜色空间的颜色阈值剔除非尾灯目标,利用Kalman滤波方法将图像分为跟踪区域和检测区域,在两个区域内分别进行尾灯配对,根据尾灯对之间特征相似性的比较,剔除误检的车辆;跟踪区域中漏检的车辆,根据前一帧检测的车辆位置和正确抽取的尾灯来估计,以实现车辆检测。实验结果表明,该算法能准确检测夜间前方车辆,有效降低漏检率和误检率。  相似文献   

3.
王琳  姚新  雷丹 《中国公路学报》2018,31(11):121-129
为了有效探测公路隧道火灾初期火焰并预警,针对传统的感温型火灾火焰探测器在公路隧道等大空间环境存在反应速度慢等问题,通过研究失控火焰在图像中呈现的静态和动态特征,提出一种基于火焰图像多特征和AdaBoost算法的公路隧道火灾初期火焰识别方法。利用帧间差分算法提取运动前景,根据火焰在RGB和Lab空间的颜色统计模型分割疑似火焰区域,用从疑似区域中提取的H分量一阶矩、圆形度和LBP一阶矩特征值构成特征向量,作为AdaBoost静态特征模型的输入向量,用在一个检测周期提取的疑似区域质心跳动频率归一化特征值和AdaBoost静态特征模型识别结果中火焰帧数占周期总帧数的比值构成特征向量,作为AdaBoost综合特征模型的输入向量,并优化选取AdaBoost模型的参数。采用公路隧道火焰视频和公用视频对训练得到的AdaBoost静态特征分类器和AdaBoost综合特征分类器进行试验测试。结果表明:该方法能够实现公路隧道环境火灾初期的火焰识别,并能有效排除伪火焰车灯等干扰引起的误报警。  相似文献   

4.
为提供准确有效的停车位位置信息,提出一种基于车位导轨线跟踪和车位角特征的检测方法。首先,从直线段检测(LSD)算法检测的线段中提取车位导轨线,通过导轨线跟踪算法增强环境适应性,确定车位角的待检测感兴趣区域。其次,训练了单个基于方向梯度直方图(HOG)特征的支持向量机(SVM)分类器进行"T"型和"L"型车位角检测,使用改进的非极大值抑制算法优化检测结果。试验结果表明,与仅基于车位线特征或车位角特征的算法相比,所提出的算法漏检率更低,在多种天气条件下具有较好的鲁棒性和适应性。  相似文献   

5.
针对夜间环境下基于摄像机的车辆检测方法存在精度低、稳定性差以及无法对车型进行有效识别等问题,提出一种基于Kinect深度虚拟线圈的夜间车辆检测与计数算法.首先对Kinect深度图像进行预处理,分别获得运动目标深度图(MDM)与空洞深度图(HDM).然后在MDM与HDM上设置虚拟线圈,利用积分图像分别生成对应的一维运动信号,对其进行加权合成获得对车辆运动特征的表达,并在合成的运动信号范围内检测出车辆目标,并计算出车辆目标的几何特征,通过SVM对车型进行有效识别.实验结果表明,该算法对于单双车道的车辆计数正确率分别高达99.75%与99.25%,大小车型分类正确率可达99.80%,处理单张图片的平均时间仅为7 ms.   相似文献   

6.
为提高交通参数提取的准确性与实时性,研究了基于多尺度边缘融合和SURF特征匹配的车辆检测与跟踪方法,克服了传统基于边缘特征的车辆检测方法易受噪声、背景干扰的问题,实现车辆准确检测.将车辆检测结果作为跟踪样本建立跟踪样本集合,通过建立匹配点对几何约束消除误匹配特征对,提高跟踪样本与待跟踪视频帧的SURF特征匹配准确度.针对车辆驶入、驶离相机视野,车辆间歇性运动,背景缓慢变化等情况提出跟踪样本更新机制,实现车辆的准确、实时跟踪.实验结果显示,所提算法的车辆检测率为88.3%,检测准确度为90.2%;跟踪精确度为86.4%,跟踪准确度为92.7%;检测时间成本为91.8ms,跟踪速率为52.2fps.检测准确度、跟踪准确度、检测速率、跟踪速率均高于光流法、粒子滤波法和SIFT特征匹配法,表明所提算法能较好地满足实时性应用.   相似文献   

7.
SuBSENSE是一种融合颜色特征和纹理特征的通用运动目标检测算法,同时算法中的参数自适应反馈机制使得背景模型能够良好地适应内河环境的多样性,在多种检测环境下达到参数最优化设置.针对一般运动目标检测算法用于内河船舶检测时,难以克服水波纹干扰这一问题,提出将SuBSENSE与基于全局对比度的显著性区域检测方法结合进行波纹抑制.利用水面显著值较低这一特性,通过设置适当阈值对显著图进行二值化,从而分离船舶与水面区域.将显著图与SuBSENSE检测结果进行与运算滤除背景干扰,即可得到船舶区域.实验证明,该方法能有效抑制内河环境中的波纹干扰,相比原SuBSENSE算法将综合表现提高了14.6%.   相似文献   

8.
提出了1种基于双视角学习原理的高速公路交通视频车辆事件鲁棒检测算法.针对道路交通结构化特点提出了分车道外极面图(Epipolar Plane Image,简称 EPI),以此反映交通断面车流整体特征.基于双视角学习原理,融合现有广泛应用的反映车辆独立行为的行驶轨迹特征,实现高速公路车辆事件鲁棒检测.针对多种典型车辆事件(包括交通拥堵,车辆逆行,车辆违规停车,交通事故等),本文算法总体检测率为94.09%,误检率为4.51%,漏检率为1.40%,其性能与传统单视角方法比较有较大的提高.   相似文献   

9.
针对在复杂场景下,背景区域干扰特征过多、被检测目标运动速度快等导致的动态目标检测率低的问题,研究了基于深度学习的多角度车辆动态检测方法,将带有微型神经网络的卷积神经网络(MLP-CNN)用于传统算法的改进.使用快速候选区域提取算法提取图像中可能存在车辆的区域,之后使用深层卷积神经网络(CNN)提取候选区域的特征,并在卷积层中增加微型神经网络(MLP)对每层的特征进一步综合抽象,最后使用支持向量机(SVM)区分目标和背景的CNN特征.实验表明,该方法能够处理高复杂度背景条件下,部分遮挡、运动速度快的目标特征检测,识别率高达87.9%,耗时仅需225ms,比常用方法效率有大幅度提升.   相似文献   

10.
车载毫米波雷达是智能驾驶环境感知系统中重要的传感器,为实现车载毫米波雷达目标跟踪的稳定性、实时性和精确性,本文设计了一种基于联合概率数据关联(JPDA)的雷达目标跟踪算法,并提出了一种对传统JPDA算法的改进方式,该方式考虑了车载毫米波雷达运行的实际工况,通过改进点迹的选取方式以及利用生命周期理论简化关联事件的生成两个步骤,对传统JPDA算法进行了简化,解决了传统JPDA算法在密集目标环境下的组合爆炸问题,以及毫米波雷达虚警和漏检带来的数据不连贯、不稳定问题,实现了跟踪的稳定性和实时性;同时本文采用常加速度模型结合Kalman滤波对雷达目标运动状态进行了估计,解决了前后帧雷达目标运动状态不连续以及雷达信息中的噪声问题,实现了跟踪的精确性。实验结果表明:在复杂交通环境下,该毫米波雷达跟踪算法相较于传统JPDA算法,运算速率提升了50. 5%,稳定性提升了78. 46%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号