首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对汽车制动的特点以及汽车防抱死制动系统的性能要求,建立了汽车的数学模型,提出一种模糊神经网络的自适应控制方案,构建了基于模糊神经网络的控制器和辨识器的结构模型。通过对网络参数的离线训练得出其初值,在控制过程中对网络参数进行在线微调,实现对汽车制动过程的有效控制。仿真结果表明:在不同的路面,汽车均能保持在最佳滑移率附近进行制动,制动时间及距离比较理想,满足ABS的安全性能要求。  相似文献   

2.
制动安全是车辆主动安全的关键技术之一。制动决策和执行器控制是影响线控制动系统性能的两个主要因素。路面自适应性和控制器鲁棒性分别对制动决策和执行器控制有着重要影响,制约着线控制动系统的发展。本文中以一种液压调控的线控制动系统为基础,针对路面自适应性和控制器鲁棒性问题,提出一种双层结构的制动系统控制器,上层采用计算机视觉的方法对路面类型进行识别,根据识别结果制定当前路面的最佳滑移率;下层针对制动系统参数不确定性问题,引入滑模控制理论对制动过程中的最佳滑移率进行跟踪控制。通过仿真与实验验证,结果表明,双层结构的制动系统控制器相比传统控制器,路面的自适应性好,制动距离更短,控制器鲁棒性好。  相似文献   

3.
防抱死制动系统模糊自学习控制研究   总被引:2,自引:0,他引:2  
由于车辆参数和运行工况的复杂多变,针对特定参数和路面条件所设计的防抱死制动系统往往难以适应。为解决这一问题,文中首先建立了带有盘式制动器的双轮车辆直线制动系统的数学模型;而后提出了模糊自学习控制策略,该方案通过引入模糊学习机制以调整模糊控制器的规则集,可使车辆对象输出跟踪理想参考模型的输出;接着对所设计控制算法在不同路面条件下进行了性能模拟;最后开发了模糊自学习微控制器,基于硬件在环仿真技术,对设计控制器的性能进行了实验验证。  相似文献   

4.
When braking on wet roads, Antilock Braking System (ABS) control can be triggered because the available brake torque is not sufficient. When the ABS system is active, for a hybrid electric vehicle, the regenerative brake is switched off to safeguard the normal ABS function. When the ABS control is terminated, it would be favorable to reactivate the regenerative brake. However, recurring cycles from ABS to motor regenerative braking could occur. This condition is felt to be unpleasant by the driver and has adverse effects on driving stability. In this paper, a novel hybrid antiskid braking system using fuzzy logic is proposed for a hybrid electric vehicle that has a regenerative braking system operatively connected to an electric traction motor and a separate hydraulic braking system. This control strategy and the method for coordination between regenerative and hydraulic braking are developed. The motor regenerative braking controller is designed. Control of regenerative and hydraulic braking force distribution is investigated. The simulation and experimental results show that vehicle braking performance and fuel economy can be improved and the proposed control strategy and method are effective and robust.  相似文献   

5.
汽车的制动性能关系剑汽车安全行驶性能。ABS防抱死系统的应用是汽车安全性方面最重要的技术进展。通过对装备ABS汽车与普通汽车制动距离的计算比较分析发现,在湿滑的道路上突然制动,ABS系统可以使驾驶员能够保持车辆行驶平稳,在较短的距离内将汽车刹住。但在不湿滑的路面上,缩短刹车距离的范同值比较小。而在冰雪路面上行驶的车辆,没有装备ABS的汽车在湿路面或冻路面上制动时,制动距离会过长且不能猛烈转向。而装备ABS系统的汽车也是如此,因为尽管ABS能提供附加的制动控制和转向控制,但它不能解决这样一个客观的物理事实:那就是在较滑的路面上,可利用的牵引力很小。  相似文献   

6.
Functions of anti-lock braking for full electric vehicles (EV) with individually controlled wheel drive can be realized through conventional brake system actuating friction brakes and regenerative brake system actuating electric motors. To analyze advantages and limitations of both variants of anti-lock braking systems (ABS), the presented study introduces results of experimental investigations obtained from proving ground tests of all-wheel drive EV. The brake performance is assessed for three different configurations: hydraulic ABS; regenerative ABS only on the front axle; blended hydraulic and regenerative ABS on the front axle and hydraulic ABS on the rear axle. The hydraulic ABS is based on a rule-based controller, and the continuous regenerative ABS uses the gain-scheduled proportional-integral direct slip control with feedforward and feedback control parts. The results of tests on low-friction road surface demonstrated that all the ABS configurations guarantee considerable reduction of the brake distance compared to the vehicle without ABS. In addition, braking manoeuvres with the regenerative ABS are characterized by accurate tracking of the reference wheel slip that results in less oscillatory time profile of the vehicle deceleration and, as consequence, in better driving comfort. The results of the presented experimental investigations can be used in the process of selection of ABS architecture for upcoming generations of full electric vehicles with individual wheel drive.  相似文献   

7.
A cooperative control algorithm for an in-wheel motor and an electric booster brake is proposed to improve the stability of an in-wheel electric vehicle. The in-wheel system was modeled by dividing it into motor and mechanical parts, and the electric booster brake was modeled through tests. In addition, the response characteristics of the in-wheel system and the electric booster brake were compared through a frequency response analysis. In the cooperative control, the road friction coefficient was estimated using the wheel speed, motor torque, and braking torque of each wheel, and the torque limit of the wheel to the road was determined using the estimated road friction coefficient. Based on the estimated road friction coefficient and torque limit, a cooperative algorithm to control the motor and the electric booster brake was proposed to improve the stability of the in-wheel electric vehicle. The performance of the proposed cooperative control algorithm was evaluated through a hardware-in-the-loop simulation (HILS). Furthermore, to verify the performance of the proposed cooperative control algorithm, a test environment was constructed for the anti-lock braking system (ABS) hydraulic module hardware, and the performance of the cooperative control algorithm was compared with that of the ABS by means of a HILS test.  相似文献   

8.
Summary In this paper a sliding mode integral action controller and sliding mode observer are used to enhance vehicle stability in a split- µ manoeuvre. Anti-lock braking systems (ABS) have become an integral part of modern cars, and they have dramatically improved vehicle handling in braking manoeuvres. However, when a vehicle attempts to brake on a surface with uneven friction coefficient such as on wet or icy roads, a so-called split- µ scenario, the yaw moment generated by the asymmetric braking can prove demanding for an inexperienced driver. The controller presented hereworks in conjunction with a conventional ABS system to provide safe and effective braking through steer-by-wire. This paper extends previous state-feedback work by only using certain measurable quantities in the controller, estimating further signals by employing an observer.  相似文献   

9.
Summary In this paper a sliding mode integral action controller and sliding mode observer are used to enhance vehicle stability in a split- µ manoeuvre. Anti-lock braking systems (ABS) have become an integral part of modern cars, and they have dramatically improved vehicle handling in braking manoeuvres. However, when a vehicle attempts to brake on a surface with uneven friction coefficient such as on wet or icy roads, a so-called split- µ scenario, the yaw moment generated by the asymmetric braking can prove demanding for an inexperienced driver. The controller presented hereworks in conjunction with a conventional ABS system to provide safe and effective braking through steer-by-wire. This paper extends previous state-feedback work by only using certain measurable quantities in the controller, estimating further signals by employing an observer.  相似文献   

10.
针对多轴分布式电机驱动车辆电液复合制动中易出现的车辆制动抖动问题,提出了一种建压阶段电机制动力修正策略和一种基于前馈-反馈的协调控制策略,分别在建压阶段和其他阶段通过协调复合制动力来解决制动抖动的问题。针对防抱死控制系统与电机制动系统共同作用时的制动矛盾,提出了一种基于PID 控制的ABS控制策略,主要通过改变电机制动力来解决制动矛盾的问题。通过TruckSim、Matlab/Simulink及AMESim联合仿真验证,制动冲击度在建压阶段下降了 20.66%,在电机退出阶段下降了 92.59%,驾驶感觉得到明显改善。而 ABS控制策略也可在保证理想滑移率的同时完成制动能量回收;结合整车制动试验,表明协调控制策略在保证制动效果良好的同时实现了制动能量回收,效果显著。  相似文献   

11.
A robust control algorithm for an anti-lock brake system is proposed. The method used is based on static-state feedback of longitudinal slip and does not involve controller scheduling with changing vehicle speed or road adhesion coefficient estimation. An improvement involving scheduling of longitudinal slip reference with longitudinal acceleration measurement is included. Electromechanical braking actuators are used in simulations, and the algorithm used in this study is shown to have high performance on roads with constant and varying adhesion coefficients, displaying nice robustness properties against large vehicle speed and road adhesion coefficient variations. Guidelines are provided for tuning controller gains to cope with unknown actuator delay and measurement noise.  相似文献   

12.
在Matlab/Simulink中建立一种两轮的汽车动力模型,以自适应模糊PID和道路识别控制器作为控制模块,通过在高低附着路面和高低附着对接路面进行紧急制动仿真的研究。仿真结果表明道路识别控制器能够快速准确的识别路面不同附着路面最优滑移率,自适应模糊PID控制的ABS相于常规制动性能有了很大程度的提高,具有在线自整定参数的特点,具有很好的稳定性、适应性和鲁棒性。  相似文献   

13.
Regenerative braking is an important technology in improving fuel economy of an electric vehicle (EV). However, additional motor braking will change the dynamic characteristics of the vehicle, leading to braking instability, especially when the anti-lock braking system (ABS) is triggered. In this paper, a novel semi-brake-by-wire system, without the use of a pedal simulator and fail-safe device, is proposed. In order to compensate for the hysteretic characteristics of the designed brake system while ensure braking reliability and fuel economy when the ABS is triggered, a novel switching compensation control strategy using sliding mode control is brought forward. The proposed strategy converts the complex coupling braking process into independent control of hydraulic braking and regenerative braking, through which a balance between braking performance, braking reliability, braking safety and fuel economy is achieved. Simulation results show that the proposed strategy is effective and adaptable in different road conditions while the large wheel slip rate is triggered during a regenerative braking course. The research provides a new possibility of low-cost equipment and better control performance for the regenerative braking in the EV and the hybrid EV.  相似文献   

14.
A collocation-type control variable optimisation method is used to investigate the extent to which the fully active suspension (FAS) can be applied to improve the vehicle electronic stability control (ESC) performance and reduce the braking distance. First, the optimisation approach is applied to the scenario of vehicle stabilisation during the sine-with-dwell manoeuvre. The results are used to provide insights into different FAS control mechanisms for vehicle performance improvements related to responsiveness and yaw rate error reduction indices. The FAS control performance is compared to performances of the standard ESC system, optimal active brake system and combined FAS and ESC configuration. Second, the optimisation approach is employed to the task of FAS-based braking distance reduction for straight-line vehicle motion. Here, the scenarios of uniform and longitudinally or laterally non-uniform tyre–road friction coefficient are considered. The influences of limited anti-lock braking system (ABS) actuator bandwidth and limit-cycle ABS behaviour are also analysed. The optimisation results indicate that the FAS can provide competitive stabilisation performance and improved agility when compared to the ESC system, and that it can reduce the braking distance by up to 5% for distinctively non-uniform friction conditions.  相似文献   

15.
Because of the damping and elastic properties of an electrified powertrain, the regenerative brake of an electric vehicle (EV) is very different from a conventional friction brake with respect to the system dynamics. The flexibility of an electric drivetrain would have a negative effect on the blended brake control performance. In this study, models of the powertrain system of an electric car equipped with an axle motor are developed. Based on these models, the transfer characteristics of the motor torque in the driveline and its effect on blended braking control performance are analysed. To further enhance a vehicle's brake performance and energy efficiency, blended braking control algorithms with compensation for the powertrain flexibility are proposed using an extended Kalman filter. These algorithms are simulated under normal deceleration braking. The results show that the brake performance and blended braking control accuracy of the vehicle are significantly enhanced by the newly proposed algorithms.  相似文献   

16.
文中根据大量道路试验获得的知识,在普遍采用的逻辑门限值控制方法的基础上提出了一种能够对不同路面和制动工况具有广泛自适应能力的ABS控制策略.该策略能够根据路面状况对主要控制门限进行自适应调整,并能准确估算参考车速.大量的匹配和实车道路试验表明,基于试验知识的ABS自适应控制策略能够提升控制效果并减少ABS在新车型上的匹配时间.开发完成的液压ABS性能和可靠性满足产业化要求,已在多款SUV和皮卡车上批量装车使用.  相似文献   

17.
In this study, cooperative regenerative braking control of front-wheel-drive hybrid electric vehicle is proposed to recover optimal braking energy while guaranteeing the vehicle lateral stability. In front-wheel-drive hybrid electric vehicle, excessive regenerative braking for recuperation of the maximum braking energy can cause under-steer problem. This is due to the fact that the resultant lateral force on front tire saturates and starts to decrease. Therefore, cost function with constraints is newly defined to determine optimum distribution of brake torques including the regenerative brake torque for improving the braking energy recovery as well as the vehicle lateral stability. This cost function includes trade-off relation of two objectives. The physical meaning of first objective of cost function is to maximize the regenerative brake torque for improving the fuel economy and that of second objective is to increase the mechanical-friction brake torques at rear wheels rather than regenerative brake torque at front wheels for preventing front tire saturation. And weighting factor in cost function is also proposed as a function of under-steer index representing current state of the vehicle lateral motion in order to generalize the constrained optimization problem including both normal and severe cornering situation. For example, as the vehicle approaches its handling limits, adaptation of weighting factor is possible to prioritize front tire saturation over increasing the recuperation of braking energy for driver safety and vehicle lateral stability. Finally, computer simulation of closed loop driver-vehicle system based on Carsim? performed to verify the effectiveness of adaptation method in proposed controller and the vehicle performance of the proposed controller in comparison with the conventional controller for only considering the vehicle lateral stability. Simulation results indicate that the proposed controller improved the performance of braking energy recovery as well as guaranteed the vehicle lateral stability similar to the conventional controller.  相似文献   

18.
Modern hybrid electric vehicles employ electric braking to recuperate energy during deceleration. However, currently anti-lock braking system (ABS) functionality is delivered solely by friction brakes. Hence regenerative braking is typically deactivated at a low deceleration threshold in case high slip develops at the wheels and ABS activation is required. If blending of friction and electric braking can be achieved during ABS events, there would be no need to impose conservative thresholds for deactivation of regenerative braking and the recuperation capacity of the vehicle would increase significantly. In addition, electric actuators are typically significantly faster responding and would deliver better control of wheel slip than friction brakes. In this work we present a control strategy for ABS on a fully electric vehicle with each wheel independently driven by an electric machine and friction brake independently applied at each wheel. In particular we develop linear and nonlinear model predictive control strategies for optimal performance and enforcement of critical control and state constraints. The capability for real-time implementation of these controllers is assessed and their performance is validated in high fidelity simulation.  相似文献   

19.
A sliding-mode observer is designed to estimate the vehicle velocity with the measured vehicle acceleration, the wheel speeds and the braking torques. Based on the Burckhardt tyre model, the extended Kalman filter is designed to estimate the parameters of the Burckhardt model with the estimated vehicle velocity, the measured wheel speeds and the vehicle acceleration. According to the estimated parameters of the Burckhardt tyre model, the tyre/road friction coefficients and the optimal slip ratios are calculated. A vehicle adaptive sliding-mode control (SMC) algorithm is presented with the estimated vehicle velocity, the tyre/road friction coefficients and the optimal slip ratios. And the adjustment method of the sliding-mode gain factors is discussed. Based on the adaptive SMC algorithm, a vehicle's antilock braking system (ABS) control system model is built with the Simulink Toolbox. Under the single-road condition as well as the different road conditions, the performance of the vehicle ABS system is simulated with the vehicle velocity observer, the tyre/road friction coefficient estimator and the adaptive SMC algorithm. The results indicate that the estimated errors of the vehicle velocity and the tyre/road friction coefficients are acceptable and the vehicle ABS adaptive SMC algorithm is effective. So the proposed adaptive SMC algorithm can be used to control the vehicle ABS without the information of the vehicle velocity and the road conditions.  相似文献   

20.
具有ABS的汽车制动性能实验模拟系统   总被引:1,自引:0,他引:1  
杨启梁  严运兵 《汽车科技》2003,(5):40-41,48
介绍了一种在室内模拟汽车道路制动试验的测试系统,该系统不仅可作为汽车防抱死制动系统(ABS)实验教学的设备,亦可作为开发ABS的前期试验装置。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号