首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
在进行车辆拖滞力矩试验时,摩擦片厚薄差对拖滞力矩具有较大影响.文中针对摩擦片厚薄差对拖滞力矩存在的影响进行理论分析与试验验证,设计了不同磨损状态下的摩擦片拖滞力矩试验,编写了对应的上位机VB程序.经过多次反复测试,得出厚薄差越大拖滞力矩也越大、摩擦片厚薄差引起制动盘的转动阻力矩增大使得拖滞力矩变大,最终得出将摩擦片厚薄差限制在0.1mm以下能较好地满足实际应用要求.  相似文献   

2.
采用鼓式制动器的车辆新换制动片后,车轮制动时容易不产生拖滞现象(尤其是磨损较大并且已经变成椭圆形的制动鼓),而根据车辆年审、强制二级维护保养内容以及安全行车的技术要求,车辆制动时必须产生拖滞而且要达到规定的制动力矩,这给参加年审以及强制二级维护保养的车辆带来诸多不便.  相似文献   

3.
田韶鹏  余晓星 《上海汽车》2010,(3):48-49,54
联合可编程序控制器(PLC)与虚拟仪器(LabVIEW)两套控制系统,结合了两者的优势,以上汽通用五菱公司的M150和CN100车型为研究对象设计检测实验台架,实现了对汽车液压盘式制动器拖滞力矩的在线检测。  相似文献   

4.
(上接2001年第3期) 3.9制动器的调整 制动器的调整,既要确保摩托车能迅速可靠地制动,又要确保在放松制动时,制动器能迅速彻底回位,车轮无拖滞现象.因此,无论是盘式,还是鼓式制动器,均要定期调整块盘(或蹄鼓)之间的间隙至规定要求,间隙过大、过小均是不合适的.间隙过大,需提前制动,增加制动力,延长制动时间,不但使制动距离增加,而且油耗也会增加;间隙过小,要多耗部分燃料,克服摩擦阻力,使油耗增加,更为严重的是在不需制动时,由于间隙太小,有可能产生局部摩擦,亦即拖滞现象,增大行驶阻力,使油耗迅速升高.  相似文献   

5.
本文通过控制变量法测量多辆车在不同条件下的车轮拖滞力矩,然后对多组测量数据进行处理分析,得出各干扰因素对测量车轮拖滞力矩的影响程度,据此制定出相对科学的车轮拖滞力矩测量方法,提高了测量数据的准确性。  相似文献   

6.
吴杰  张辉 《汽车工程》2024,(3):526-535
针对磁流变制动器制动力矩输出不稳定的问题,采用遗传算法优化后的模糊PID控制器对双线圈磁流变制动器进行力矩控制。基于Bingham模型建立了双线圈磁流变制动器的制动力矩数学模型,同时推导了磁流变制动器的动态模型。完成了双线圈磁流变制动器的制动力矩实验,当励磁电流为1.0 A时,磁流变制动器制动力矩最大值为4.8 N·m;采用最小二乘结构模型,开展了双线圈磁流变制动器传递函数的参数辨识;基于遗传算法和模糊PID控制,设计了双线圈磁流变制动器的遗传算法优化的模糊PID控制器;搭建了磁流变制动器控制实验平台,开展了磁流变制动器力矩控制实验研究。研究结果表明,相比于传统模糊PID控制,在基于遗传算法优化的模糊PID控制下,双线圈磁流变制动器能实现较好的力矩控制效果,制动力矩阶跃响应上升时间为0.63 s,超调量为4.17%,制动力矩跟踪误差在0.2 N·m以内,具有较快的响应速度、较小的超调量以及较小的力矩跟踪误差。  相似文献   

7.
车辆行驶中需克服轮端制动卡钳的制动拖滞力,可通过增加八字形复位弹簧、增大制动卡钳钳体缸孔内矩形密封圈槽前倒角、调整摩擦片压缩率、采用低摩擦阻力的导向销结构等措施,降低制动卡钳拖滞力矩;同时,制动卡钳所需液量相应增大,对制动踏板感和ADAS (Advanced Driver Assistance System,先进驾驶辅助系统)的AEB (Autonomous Emergency Braking,自动紧急制动)响应时间均带来不利影响,但踏板感模拟调节器和ADAS AEB预冲压功能可在一定程度上缓解这一不利影响。对拖滞力矩优化前、后样件进行台架测试发现,优化后制动卡钳拖滞力矩明显降低,为浮动式制动卡钳开发提供参考。  相似文献   

8.
当汽车重量较大时,燃油消耗也增加。当汽车在平路上以恒定的速度行驶时,车重的增加对燃油消耗的影响不大。但是,当反复启动、加速和爬坡时,车重对燃油消耗的影响很大。 (3)造型的不同(空气动力学) 空气阻力的增大与车速的平方成正比。因此,低速行驶  相似文献   

9.
正文章通过阐述制动钳拖滞产生的机理,介绍了影响拖滞的常见因素及主要改善途径,并通过不同设计结构的密封槽对比测试,获得不同压力下均有较低拖滞表现的设计,为降低拖滞起到抛砖引玉的作用。国家法规、行业标准对机动车的油耗和CO_2的排放限制越来越严格,对制动钳产品来讲,其总成拖滞力的大小对机动车的油耗和CO_2的排放有着直接的影响,如何进一步降低制动钳的拖滞力矩已经成为目前市场及行业的共同呼声和目标。本文通过一种新型密封圈槽结构设计,实现了不同压力下,稳定降低制动钳的拖滞力矩的目的。  相似文献   

10.
车速与油耗     
《汽车与安全》2014,(6):135-135
<正>转速越高,功率和利用率越大,燃油的单位消耗量越小。因此,在低速时汽车的油耗较高。当车速过高时其燃油消耗也很大,因为超过发动机最低油耗转速时,燃油消耗随着车速的增加而增加。当车速超过一定程度以后,燃油消耗量增加的非常快,这些因素使车速提高时燃油的单位消耗量增多,因此车速过高或过低都不利于节省燃油。为了在行车中掌握好经济车速,驾驶员应学会利用发动机转速表和车速表,适当地增加或减  相似文献   

11.
馈能电力测功机的研制及其在轿车变速器试验中的应用   总被引:2,自引:0,他引:2  
传统的测功设备是以水力测功机或电涡流测功机为主,所消耗的燃油和电能较高。介绍了一种机电耦合系统内馈能电力拖动?测功机组,克服了上述测功机的不足。该系统属于多轴混合型电力拖动系统,电能在系统内部形成回馈及再利用。它主要由馈能电机、驱动电机、同步发电机及用于吸收机械功率发出电力的交流发电机、励磁控制器、主控制台、主频调速器等组成。  相似文献   

12.
肖献法 《运输车辆》2008,(1):112-113
玉柴自主开发的我国首台满足欧V(相当于国V)排放标准的YC6L-50柴油机,于2007年12月7日正式对外发布。该机型功率176-243kW,最大转矩950-1280Nm,最低油耗189g/KWh,是一款动力性更强,更加节能、环保的新机型。  相似文献   

13.
郭昌伦 《天津汽车》2013,(11):43-46
甲醇作为一种代用燃料,可以与汽油混合使用,人们对使用低比例甲醇燃料发动机的性能十分关注。文章对加入M15甲醇汽油和加入93#汽油的发动机分别经过300 h台架强化试验,测试发动机功率、扭矩及油耗率。强化后,2种燃料的动力性能相近,但M15甲醇汽油的燃料消耗量比汽油高出9%。在汽油发动机中,直接使用M15甲醇汽油,除发动机燃料经济性变差外其他基本无变化。  相似文献   

14.
随着油耗和排放法规的加严,控制重型车油耗将成为大势所趋。文章以一台柴油机为测试对象,研究了出水温度、进油温度及中冷后温度对其油耗测试结果的影响。试验结果表明,3个参数都不会对发动机油耗测量结果造成较大的偏差,其影响程度在可接受的误差范围内。在进行重型车油耗测试时,可以忽略上述发动机条件对其结果的影响。  相似文献   

15.
基于工业和信息化部最新出台的CAFC和NEV 双积分管理办法以及市场公开的数据,以市场整体为视角研究了新能源汽车产业发展对企业平均燃油消耗量 (CAFC油耗) 的影响。研究结果表明,从2021年起,由于新能源汽车产业的快速发展,对油耗总的最大贡献将达到2.83 L/100 km,对CAFC油耗的最大贡献为2.27 L/100 km,由此造成CAFC油耗 (FCCAFC) 将远低于油耗限值,最大余量为1.21 L/100 km,积分市场的整体供应将逐渐富裕,这可能会降低企业发展汽车节能技术的积极性和紧迫性,影响行业整体的实际油耗水平。  相似文献   

16.
通过TVDI燃烧方法的采用,与此前的第一代发动机相比,油耗进一步明显地降低了,在欧洲EU测试循环中节油9%。  相似文献   

17.
混合动力汽车油耗测试试验研究   总被引:1,自引:0,他引:1  
介绍非外接充电型HEV的能量油耗测试及数据分析结果。油耗与其主电池的充放电情况呈现很强的相关性,若某次试验的充放电净值为充电,且充电量大,则该车试验的油耗相对较高。通过充放电净值来修正油耗,可以得到该HEV的修正后油耗值。对修正步骤加以一定补充,可得出更接近真实值的油耗值。  相似文献   

18.
《摩托车和轻便摩托车燃油消耗量限值及试验方法(工况法)》强制性标准的制修订及 今后的实施,加速了我国摩托车油耗测试方法与国际接轨,这对降低摩托车油耗、节约能源、保护 大气环境具有重要的意义,同时也为政府制定摩托车油耗政策提供了依据。  相似文献   

19.
混合动力汽车燃油经济性研究   总被引:3,自引:0,他引:3  
应用能量分析的方法,以轿车和载货汽车为例,研究了混合动力汽车(HEV)与传统燃油发动机汽车的燃油经济性。发现按原车后备功率最大值时所对应的车速所需的驱动功率作为HEV燃油发动机功率的选择依据,节油效果最显著。当燃油驱动功率和电动驱动功率各占50%左右时,HEV轿车的经济性评价指标为原车的22.8%,HEV货车的经济性评价指标为原车的79.2%,同时又能保证动力性基本不变。结果表明,用混合动力可以有效地降低汽车的100km燃料消耗量,轿车的燃料消耗降低幅度大于货车。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号