首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 437 毫秒
1.
杭州湾跨海大桥北航道桥斜拉桥承台混凝土温度裂缝控制   总被引:3,自引:1,他引:3  
斜拉桥承台一般均为大体积混凝土,因水泥水化热的作用,承台内外温差过大,易使混凝土出现早期温度裂缝。杭州湾跨海大桥主跨承台混凝土浇筑分层均较厚,为3~4.5 m,在承台施工中采取了行之有效的温控措施,有效地控制了温度裂缝,确保了承台混凝土的耐久性。  相似文献   

2.
大跨径桥梁承台结构尺寸大,单次浇注混凝土方量大,为典型的大体积混凝土结构,施工中温度裂缝的产生将危害桥梁结构安全及耐久性。本文以清云高速公路西江特大桥2个主墩承台施工为依托,结合项目特点,针对大体积混凝土特征,对承台混凝土施工采用全过程温控,确保大体积混凝土不产生温度裂缝,保证了承台施工质量,为类似项目提供参考依据。  相似文献   

3.
河南信阳河大桥为独塔双索面斜拉桥 ,主塔承台混凝土总量为 386m3 。该文分析了混凝土裂缝产生的机理 ,进行了主塔承台大体积混凝土的温度应力计算 ,提出了防止温度裂缝产生的混凝土施工及温度控制措施。  相似文献   

4.
在分析大体积混凝土温度裂缝产生机理的基础上,以西江特大桥主墩承台为背景,通过采用低水化热胶凝材料体系、高效缓凝型减水剂及级配良好的碎石优化混凝土配合比,采用降低混凝土入模温度、埋设冷却水管及蓄水保温养护等温控措施,进行承台大体积混凝土施工,并对浇注后承台混凝土温度进行监控,有效避免了有害温度裂缝的产生。  相似文献   

5.
南仓立交主墩18号墩的承台为目前天津市桥梁工程中最大的承台,除了采取包括混凝土的配合比水化热研究及其现场的浇筑温度控制,混凝土浇筑工艺及结束时间的选择,温度监控等常规的施工控制外,还进行了严密的现场施工组织、二次压实的初期养护要求、高强度及低平整度的封底混凝土,以及防止混凝土温度梯度过大等施工技术研究。施工后检查未见收缩裂缝。  相似文献   

6.
大体积混凝土承台具有结构厚、体形大、钢筋密、混凝土用量多、工程条件和施工技术要求高等特点,除了必须满足强度、刚度、整体性和耐久性要求外,还必须控制温度变形裂缝。海上深水桥梁基础大体积承台在此特点的基础上,受海洋环境的影响,其施工工况更加复杂化。本文依托平潭海峡大桥实体工程,提出了承台施工过程的主要施工工艺,对钢套箱施工、封底混凝土施工、大体积混凝土浇注及温控等关键技术进行了系统的研究,研究成果可以指导今后同类工程大体积承台混凝土的施工。  相似文献   

7.
根据承台混凝土现场施工情况,介绍了黄河大桥桥墩承台冬季施工质量控制,尤其是温度原因引起的混凝土裂缝的控制方法。  相似文献   

8.
王保华 《交通科技》2009,(Z1):18-20
阐述了大体积混凝土承台温度应力的基本作用原理以及温度应力在承台内部的分布情况,通过实例计算大体积混凝土在浇筑各阶段的温度变化和应力变化,分析施工阶段控制大体积混凝土承台裂缝应该注意的细节。  相似文献   

9.
青海省哇加滩黄河特大桥主桥为(104+116+560+116+104)m钢-混叠合梁斜拉桥,承台长42m、宽25.5m、高6m,为大体积混凝土结构;桥址区气温垂直分布,日夜温差较大。为避免该桥承台表面出现大面积的温度裂缝,对承台大体积混凝土施工进行温度控制。针对桥址气候特点、承台的特殊位置等因素,从原材料、混凝土配合比等方面控制混凝土入模温度和水化热总量;采用有限元软件建立承台1/4模型,根据计算结果合理布置冷却水管、制定保温方案等;通过在混凝土内布设温度传感器,对施工过程进行温度监控,并根据温度数据及时调整保温和水化热排出措施、调整混凝土内外温差。采取以上措施,承台施工完成时,未发现大面积的温度裂缝,且混凝土的温度峰值和内外温差均在规范允许值之内。  相似文献   

10.
随着科学技术的进步,新材料、新技术的广泛应用,桥梁跨度越来越大,大体积混凝土应用越来越广泛,承台混凝土体积越大,混凝土内部水化热聚集就越多,内外散热不均匀不一致,使混凝土内部产生较大的温度应力,导致承台混凝土开裂,给工程质量埋下了严重的质量隐患,因此,承台大体积混凝土设计、施工时如何降低混凝土内部温度,如何降低混凝土内外温差,防止裂缝产生是关键。本文结合临吉高速公路壶口黄河大桥主墩承台设计及施工要求,分析大体积混凝土裂缝成因和控制措施。  相似文献   

11.
廖菲 《世界桥梁》2012,(2):51-54,68
郑州黄河公铁两用桥主桥第一联为(121+5×168+121)m单索面连续钢桁结合梁斜拉桥,第二联为(121+3×120+121)m连续钢桁结合梁桥。该桥承台为大体积混凝土结构,为避免大体积混凝土出现裂纹,以主桥6号墩承台为研究对象,分析裂纹产生的主要原因,提出施工中控制裂纹产生的相应措施:首先通过试验选择混凝土的最优配合比;通过对承台有限元模型进行热工计算分析,得出合理的冷却水管布设方案及温度测点布设方式;严格控制混凝土浇筑时的分层厚度;采用"外部保温、内部降温"的冬季养护原则进行养护,并实时测量各测点温度。结果表明:该承台养护完成后,表面未出现任何裂纹,实现了大体积混凝土裂纹的有效控制。  相似文献   

12.
贾兆丰  王亚齐  王战争  高娟  张海龙 《公路》2011,(10):176-179
应用大型有限元软件分析桥梁承台施工中管冷的作用,通过有管冷、无管冷和降低管冷温度模拟大体积混凝土降温的效应.根据湖北十堰地区某大桥承台施工中的真实记录,证明文中的仿真分析是正确的,所得结论对类似工程具有较大的参考价值.  相似文献   

13.
为了确保襄渝线流水河大桥库区高桩承台施工的安全性,提高工程建设质量,结合工程实际情况,在大桥高桩承台施工中选用单壁结构钢吊箱。介绍了钢吊箱结构型式的选择、工艺流程、安装、下沉、封底及承台施工等,并对施工质量控制和施工安全提出了建议。实践表明,这种方法经济效益良好,具有较强的适用性,可为类似条件下桥梁下部结构的施工提供参考。  相似文献   

14.
海上桥梁承台与承台防撞设施一体化施工   总被引:1,自引:0,他引:1  
海上桥梁承台施工受海洋环境影响最为明显,选择合理的施工方案和工艺,并进行合理的施工组织以克服恶劣的海洋环境,是十分必要的。通过对东海大桥和杭州湾大桥的高桩承台施工特点的分析,重点介绍了海上桥梁承台与承台防撞设施一体化的施工技术,而且该技术已在上海长江大桥和舟山连岛工程的承台施工中得到了推广,该技术对桥梁承台施工具有十分重要的指导意义。  相似文献   

15.
灌河大桥主4号墩承台为哑铃形,墩位处水深、潮差大、水流流速快,选用双壁钢围堰进行承台施工。文中对围堰的设计、制作、下水、运输、吊装定位下放等关键技术进行了介绍。通过对钢围堰加工制作质量的控制、关键焊缝的检测、安全运输、整体吊装及定位下放,顺利完成了承台施工。  相似文献   

16.
常聚友 《路基工程》2011,(1):155-158
由反射波法检测CFG桩(桩帽)完整性,一些桩的反射波曲线为正弦波衰减、周期大、无桩底反射信号,经分析和验证,原因是施工桩时,造成了桩浅部垂向裂纹、水平断裂、桩帽与桩没有连结成一体。为确保CFG桩(桩帽)质量完整,采用CFG桩帽混凝土完全湿揭法施工,效果良好。  相似文献   

17.
苏通大桥辅桥主墩承台大体积混凝土施工温度控制   总被引:1,自引:0,他引:1  
贾应春  崔清强 《桥梁建设》2006,(Z1):101-104
提出大体积混凝土结构施工温控的思路和工作流程。介绍苏通大桥辅桥主墩承台大体积混凝土施工温控的施工方案决策计算结果及施工过程控制计算,并与温度监测结果进行了对比分析。对类似工程具有一定的指导意义。  相似文献   

18.
陈进楷 《公路》2021,(2):109-113
漳州开发区陆岛连接桥设计为独塔斜拉索桥,其主墩基础承台设计为直径为18.5m的圆形承台,采用直径为21.6m的圆形钢板桩围堰进行承台和下塔柱的施工。结合该工程实例,主要介绍了圆形钢板桩围堰的适用性、设计要点及施工工艺,总结了施工过程中出现的一些问题及采用的措施,用以提高钢板桩围堰的施工质量及施工进度,为同类工程提供借鉴。  相似文献   

19.
周俊  黄齐龙  白占时  雷力  夏敏程 《公路》2021,(1):122-129
武穴长江公路大桥15号墩承台为哑铃形承台,承台尺寸58.8m×28.8m×7m,浇筑方量9 560.2m3,封底混凝土厚5m,承台下设38根直径3m、桩长84m的钻孔灌注桩。选取适宜的混凝土材料参数及配比,采用MIDAS/FEA有限元分析软件辅助开展温控计算,分别对无管冷分块不分层、有管冷分块不分层、无管冷分块分层、有管冷分块分层4种情况开展计算,分析最高温、最大内表温差、温度应力等开裂风险影响参数的变化。同时,介绍了大体积异形承台预留后浇带分层分区浇筑技术、大体积承台后浇带模板整体式支撑技术、大体积承台后浇带温控技术等施工关键技术,为大体积现浇混凝土施工提供整体保障。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号