首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 250 毫秒
1.
为设计可提升列车小半径曲线通过性能的钢轨非对称打磨目标廓形,对中国现有CN60钢轨廓形进行了几何推导;以钢轨廓形几何参数作为设计变量,以车辆系统多体动力学指标作为综合目标函数,考虑钢轨打磨约束条件,提出了一种针对小半径曲线钢轨非对称打磨廓形的多目标数值优化模型;基于差分进化算法编写了相应的数值计算程序,并选择合理的计算参数求解了优化模型;根据实际线路参数分析了优化后钢轨打磨廓形的轮轨接触几何特性,并验证了列车的小半径曲线动力学性能。研究结果表明:提出的优化方法具有较快的计算速度,优化模型仅迭代了97次即可获得理想的钢轨打磨廓形;非对称打磨使内外钢轨具有差异性的打磨位置与打磨深度,将轮轨对中位置向轨道内侧移动了约10 mm,且不会改变轮缘处的轮轨匹配特性,有效增大了轮对横移10 mm范围内的轮对滚动圆半径差与轮轨接触角差,降低了列车在通过小半径曲线时的轮对横移、轮轨横向力、脱轨系数和轮重减载率,提高了转向架的横向稳定性和轮轨磨耗性能;虽然该打磨方式获得的钢轨廓形增大了轮轨接触应力,但并不会引起轮轨塑性变形。由此可见,该设计方法为提高列车的中小半径曲线通过能力提供了一种可行途径。   相似文献   

2.
为在重载钢轨打磨廓形优化设计中最小化钢轨打磨量,建立了打磨量的钢轨廓形对齐及计算方法,设计以轮轨磨耗指数、轮轨接触应力以及钢轨打磨量为优化子目标的综合优化评价模型,并对不同优化策略的优化结果进行了分析. 首先,通过矩阵旋转变换、曲线拟合及样条插值等理论建立钢轨廓形自动对齐算法,并计算目标廓形打磨量;其次,考虑轮轨磨耗指数、接触应力以及钢轨打磨量,建立综合优化目标函数,采用遗传算法并联合车辆轨道动力学仿真模型求解优化钢轨打磨廓形;最后,运用所建立的钢轨廓形优化设计模型计算分析不同优化策略的设计结果. 研究结果表明:同时考虑轮轨磨耗、轮轨接触应力和钢轨打磨量,优化后曲线外、内轨廓形平均磨耗指数相比初始廓形下降68.9%,内轨接触应力下降39.1%,打磨量下降21.8%,优化效果最佳;只考虑轮轨磨耗和接触应力时,优化后曲线外轨廓形磨耗指数和内轨接触应力下降较为明显,但打磨量下降速率相对较慢,仅为11.3%;只考虑打磨量时,优化后钢轨廓形打磨量下降最快,为24.4%,但轮轨接触应力显著变大.   相似文献   

3.
以心轨顶宽20、35、50 mm处的辙叉区钢轨关键截面作为研究对象,基于NURBS曲线理论建立辙叉区钢轨廓形重构方法;以关键截面钢轨廓形上若干型值点为设计变量,以打磨材料去除量的减少和脱轨系数的降低为目标,以钢轨廓形几何特征和降低钢轨滚动接触疲劳为约束条件,设计出18号道岔辙叉区钢轨经济性打磨廓形;建立了轮轨接触有限元模型和车辆-轨道耦合动力学模型,进行了轮轨接触应力与动力学指标计算。分析结果表明:优化的打磨廓形接触点分布均匀,具有良好的轮轨接触几何特性;钢轨打磨材料去除量在2号截面处降低了17.2%;各截面Mises应力分别降低了8.7%、8.3%和11.5%,轮轨接触应力降幅分别为12.9%、15.8%和18.0%;列车逆侧向过岔时,轮轨横向力与车体横向振动加速度分别降低了10.3%和15.6%,脱轨系数与轮重减载率分别降低了8.1%和10.6%,疲劳因子降低了12.2%。可见,优化廓形在保证列车运行安全性的同时,提升了列车运行的平稳性以及辙叉区钢轨的使用寿命。   相似文献   

4.
重载铁路及客货共线铁路运营条件下,轮轨磨耗问题尤为突出. 为了有效减缓轮轨磨耗发展,以不同接触条件下轮轨廓形共形度最优为原则,设计目标函数及约束条件,建立钢轨廓形非线性优化数学模型,并基于序列二次规划法进行求解,提出60 kg/m钢轨廓形的优化方案;从轮轨接触几何关系、车辆-轨道系统动力作用、磨耗的角度对优化廓形的优化效果进行了对比分析. 结果表明:1) 所提出的60 kg/m钢轨优化廓形相对于原始廓形使目标函数值降低了50%,与LM车轮廓形具有更高的共形度水平;2) 优化廓形的轮轨接触点分布更为均匀,在轮对横移量较小的条件下轮径差更小,在轮对横移较大的条件下轮径差更大;3) 优化廓形对车辆运行安全性和平稳性无显著影响,可有效增大轮轨接触面积达11.24%,降低接触应力达20.42%,减缓轮轨磨耗发生发展速率.   相似文献   

5.
选取徐兰高铁1组道岔作为研究对象,采取个性化道岔钢轨廓形打磨,分析打磨前后轮轨几何关系,并建立车辆-道岔耦合无砟轨道系统动力分析模型,研究对比打磨前后高速列车动力学特性。结果表明:通过个性化钢轨打磨道岔后,道岔钢轨左右股较为对称,轮轨等效锥度得到优化;列车通过道岔时,轮轨横向力峰值、轮轨磨耗功峰值均显著降低,列车轮轨作用力得到改善;轮重减载率峰值、脱轨系数峰值及轮轨横移量峰值均降低,列车安全性得到显著提升;车体横/纵向加速度峰值及构架横/纵向加速度峰值均降低,列车运行稳定性得到提升。  相似文献   

6.
移动式钢轨廓形检测系统能够对线路钢轨进行全区段的连续、高频率测量,获得里程位置准确的高精度钢轨廓形三维图像,但如何利用这些钢轨廓形数据进行精确打磨尚没有成熟的方法。为此,提出了一种基于高频率测量数据的钢轨精确打磨方法,通过实测廓形与目标廓形对比得到所需打磨量随里程的变化曲线,然后进行轨头精细化分区、打磨里程分段,最终得到整个测量区间的精确打磨方案,通过在京沪高铁虹桥线路进行现场试验,证明该方法能够实现钢轨精确打磨。最后还提出一种钢轨廓形相似指数PSI(profile similarity index),对钢轨打磨前后的廓形进行了评判。结果表明,PSI能够量化反映实测廓形与目标廓形的相似程度,直接准确地评估打磨作业效果。  相似文献   

7.
应用轮轨型面测量仪在大秦重载线路上跟踪测量了不同磨耗阶段的轮轨型面,基于这些轮轨型面,应用多体动力学软件SIMPACK建立C80重载货车模型进行仿真计算,分析轮轨型面对重载货车动力学性能的影响.结果表明:在运行平稳性和稳定性方面,标准LM型车轮型面最佳,且随着车轮磨耗量的增加,平稳性和稳定性逐渐降低;在曲线通过性能方面,各个阶段的车轮型面都达到了评价标准,脱轨系数和轮重减载率都随着轮轨的磨耗而减小;轮轨横向力随着车轮的磨耗而逐渐减小;标准LM型和Ⅱ型车轮型面的磨耗功率较小,与磨耗稳定期钢轨相匹配能相对降低车轮的磨耗速率.  相似文献   

8.
选陇海线1条磨损较为严重的小半径曲线下股调边轨作为研究对象,进行个性化打磨方案设计,对轮轨几何接触状态进行分析,并进行车辆-轨道多体系统动力学仿真。结果表明:打磨后调边轨面掉块、轨面光带、钢轨磨耗速率及钢轨质量指数TQI得到显著改善;通过轮轨接触几何分析可知,打磨后等效锥度及轮轨接触点均得到优化,列车运行稳定性及轮轨接触状态得到改善;通过车辆-轨道多体系统动力学仿真研究可知,打磨后1~4位车轮与调边轨接触时接触斑内磨耗功最大值、轮重减载率最大值、车体垂向/横向加速度均降低,轮轨磨耗特性、列车运行安全性及稳定性均得到改善。  相似文献   

9.
为探明轨距杆对重载铁路小半径曲线轮轨动力学性能影响,基于车辆-轨道耦合动力学理论,分析了机车以70 km/h的运行速度通过R300 m曲线时的轮轨动态相互作用和轮轨磨耗,系统对比分析了运行速度、曲线半径和轨距杆对机车通过小半径曲线时钢轨跨中轨距动态扩大量和轮轨磨耗数,进一步研究了轨距杆的布置间距对线路横向稳定性的影响。仿真结果表明:轨距杆能够加强轨道轨距保持能力并减小曲线外侧钢轨翻转角;相比未安装轨距杆的曲线,安装了轨距杆的曲线其内侧钢轨的接触点更靠近曲线内侧;机车通过有无轨距杆的小半径曲线时的轮轨磨耗数和轨距动态扩大量均随着曲线半径减小和运行速度增大而增大;增大轨距杆布置密度可以有效增强线路轨距保持能力,当轨距杆布置间距由4个轨跨减小至3个轨跨时,轨距动态扩大量将降低36.3%。  相似文献   

10.
为更深入全面了解高速列车系统动力学研究现状,综述了高速列车动力学性能对车辆运行稳定性、安全性和平稳性的影响,总结了列车安全评价方法和动力学试验方法在车辆动力学中的应用,基于轮轨间作用力,分析了轮轨磨耗对列车动力学性能的影响,概括了车-桥耦合模型、弓网系统以及列车空气动力模型在车辆系统动力学中的研究内容。分析结果表明:车轮异常磨耗会导致舒适性下降,合理的车轮镟修能有效降低车轮非圆化和车辆系统关键部件的振动,降低车内振动噪声,增加列车运行稳定性、安全性和平稳性;合适的轮对定位刚度和抗蛇行减振器的刚度和阻尼有利于提高列车蛇行运动稳定性和转向架运动临界速度;钢轨波磨严重时会导致钢轨扣件松动,缩短车辆构架和钢轨的使用寿命;通过合理的钢轨廓型打磨可消除曲线波磨,改善轮轨关系;行波效应对车辆安全性影响很大,与相同激励下的各项参数相比,车速为350 km·h-1、行波速度为300 m·s-1时的脱轨系数、轮重减载率和轮轨横向力都有所降低;横风作用下受电弓气动抬升力增大,影响接触网安全,增大弓头阻尼和弓头刚度可改善弓网受流特性。   相似文献   

11.
基于摩擦自激理论的单侧钢轨波磨机理分析   总被引:1,自引:1,他引:0       下载免费PDF全文
肖宏  陈鑫  赵越 《西南交通大学学报》2022,57(1):83-89, 119
为了分析重载铁路曲线地段钢轨波磨的产生原因,基于摩擦自激振动理论建立小半径曲线轮轨三维接触精细化模型,讨论了不同扣件刚度、摩擦系数、超高对轮轨系统不稳定摩擦自激振动的影响,揭示了单侧钢轨波磨产生的内在原因,并通过轮轨瞬态动力学方法,分析了单侧钢轨波磨的传递及演化过程. 结果表明:超高和实际运行速度的不匹配是曲线内股钢轨首先产生波磨的主要原因;内股钢轨波磨产生后会导致轮轨系统不稳定,并将振动传递至外股钢轨,从而诱发小半径曲线地段两侧钢轨均产生波磨;适当地提高扣件垂横向刚度、控制轮轨摩擦系数在0.4以下,能够有效地降低轮轨系统发生不稳定振动的趋势,从而抑制波磨发展.    相似文献   

12.
在自行研制的小型轮轨滚动磨损实验机上,以CL60车轮钢和U71Mn钢轨钢配副为研究对象,通过控制轮轨的转速,研究滑差对重载列车轮轨黏着特性与表层损伤的影响。结果表明:滑差对轮轨黏着特性存在显著影响,在所测试的若干工况下,随滑差增大,轮轨黏着系数增大;滑差影响轮轨的磨损量,随滑差增大,轮轨磨损量增加;轮轨表面硬度随滑差增大提高;不同滑差下轮轨表面磨损机制不同,纯滚动摩擦时轮轨以疲劳损伤为主;随滑差的增加,轮轨表面磨损机制由轻微的疲劳磨损转变为黏着磨损。此外,在相同滑差下,车轮表面损伤程度较钢轨严重。  相似文献   

13.
随着车辆的运行,车轮踏面会出现不同程度的磨耗,为研究磨耗状态下车轮与钢轨之间的静态匹配性能,利用轮轨接触几何关系和非赫兹滚动接触理论,计算不同磨耗程度的车轮对轮轨接触几何参数和接触力学特性的影响,并与CHN60钢轨的计算结果进行对比.分析结果表明:轮对横移小于4 mm时,车轮磨耗程度越大,车轮上接触点的横向分布宽度越大,60N钢轨的接触点横向分布宽度明显小于CHN60钢轨,对提高车辆运行稳定性有利;车轮磨耗程度越大,轮轨磨耗指数越大,60N钢轨的轮轨磨耗指数较小,有利于轮轨廓形的保持能力.车轮磨耗程度越大,位于表面滚动接触疲劳区的范围越大,相比CHN60钢轨,60N钢轨位于表面滚动接触疲劳区的情况较少,相同条件下,能够减少轮轨滚动接触疲劳伤损的发生.   相似文献   

14.
对世界各国地铁钢轨波磨的基本特征进行了系统梳理,总结了其普遍性与时间集中性,及其与曲线、轨道结构、车辆及其他因素相关性等典型特征,并对其分类方法、形成机理和治理措施进行了综合评述。研究结果表明:钢轨波磨普遍存在于地铁与有轨电车线路中,在新线开通初期与线路改造初期最为严重;一般而言,相对于直线和大半径曲线,小半径曲线的钢轨波磨最为普遍,低轨侧波磨波长短,幅值大,但也有例外,部分大半径曲线及直线上也有分布;波磨的波长特征和发展速度与轨道结构密切相关,轨道结构及部件不匹配时,易出现快速发展的波磨;车轮踏面廓形、轮对定位、悬挂刚度与簧下质量等车辆结构参数会对波磨萌生、发展与表现特征产生影响;波磨的产生还可能与钢轨材质、牵引和制动、运行环境、湿度及摩擦因数有关。地铁钢轨波磨的形成机理主要基于轮轨系统共振、轮轨黏滑(摩擦自激)振动、钢轨振动波反射等理论,对波磨形成过程的纵向动力学影响与系统非线性因素考虑不完善,关于黏滑自激振动与轮轨负摩擦特性对波磨影响的认识还不统一,难以解释直线以及曲线高低轨波磨特征的差异等,对波磨的形成和发展缺乏理论上的主动预测和试验验证;各国主要以钢轨打磨来控制波磨发展,通过调节轨道结构、运行环境,采用钢轨吸振器和轮轨摩擦调节装置,以及优化车辆设计等主动措施来控制波磨的研究仍需进一步开展;未来应针对车辆-轨道系统的动态特性以及实际运行工况下的轮轨微观接触行为和黏滑自激振动特性,开展车辆-轨道系统的轮轨动态磨耗演化仿真,掌握地铁钢轨波磨形成机理和关键因素影响规律,提出控制地铁钢轨波磨的主动措施和轮轨匹配优化设计原则。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号